LETTER
Enantioselective Organocatalytic Thiol Addition
purified by column chromatography (PE–EtOAc, 2:1)
2199
References and Notes
yielding a 1:10 mixture of E/Z-isomers 7a (5.3 g, 15.5 mmol,
62%). The Z-isomer was obtained by recrystallization
(EtOAc–PE).
(1) For reviews, see: (a) Doyle, A. G.; Jacobsen, E. N. Chem.
Rev. 2007, 107, 5713. (b) Dondoni, A.; Massi, A. Angew.
Chem. Int. Ed. 2008, 47, 4638. (c) Yu, X. H.; Wang, W.
Chem.–Asian J. 2008, 3, 516. (d) Connon, S. J. Chem.
Commun. 2008, 2499. (e) Bertelsen, S.; Jørgensen, K. A.
Chem. Soc. Rev. 2009, 38, 2178.
(2) (a) Wynberg, H.; Helder, R. Tetrahedron Lett. 1975, 46,
4057. (b) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc.
1981, 103, 417.
(3) (a) Marcelli, T.; Hiemstra, H. Synthesis 2010, 1229.
(b) Cinchona Alkaloids in Synthesis and Catalysis: Ligands,
Immobilization and Organocatalysis, 1st ed.; Song, C. E.,
Ed.; Wiley-VCH: Weinheim, 2009.
(4) (a) Organocatalytic Enantioselective Conjugate Additions
Reactions, 1st ed.; Vicario, J. L.; Badia, L.; Carrillo, L.;
Reyes, E., Eds.; Royal Society of Chemistry: Cambridge,
2010. (b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(5) Liu, Y.; Sun, B. F.; Wang, B. M.; Wakem, M.; Deng, L.
J. Am. Chem. Soc. 2009, 131, 418.
(6) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem. Int. Ed.
2005, 44, 4032.
(7) Vakulya, B.; Varga, S.; Soos, T. J. Org. Chem. 2008, 73,
3475.
(8) Inokuma, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc.
2006, 128, 9413.
(9) (a) Palacio, C.; Connon, S. J. Chem. Commun. 2012, 48,
2849. (b) Geng, C.-G.; Li, N.; Chern, J.; Huang, X.-F.; Eu,
B.; Liu, G.-G.; Wang, X.-W. Chem. Commun. 2012, 48,
4713.
Compound (Z)-7: 1H NMR (400 MHz, CDCl3): δ = 8.64 (s,
1 H), 7.47–7.40 (m, 5 H), 6.94 (s, 1 H), 4.44 (t, J = 7.6 Hz,
2 H), 4.05 (t, J = 7.6 Hz, 2 H); 13C NMR (100 MHz, CDCl3):
δ = 164.5, 155.5 (q, J = 38.0 Hz), 152.9, 132.2, 131.6, 128.8,
129.4, 129.0, 125.6, 115.4 (q, J = 286.0 Hz), 63.0, 42.9.
Compound (E)-7: 1H NMR (400 MHz, CDCl3): δ = 8.21 (s,
1 H), 7.49–7.42 (m, 5 H), 6.65 (s, 1 H), 4.43 (t, J = 8.0 Hz,
2 H), 4.07 (t, J = 8.0 Hz, 2 H); 13C NMR (100 MHz, CDCl3):
δ = 162.3, 155.7 (q, J = 38.0 Hz), 151.9, 132.0, 130.1, 129.7,
129.5, 129.1, 125.9, 115.4 (q, J = 286.0, 62.5, 42.0 Hz); IR
(neat): 3253, 1617, 1717, 1685, 1529, 1388, 1209, 1184,
1155 cm–1; HRMS (FAB): m/z [M + H]+ calcd. for
C14H12F3N2O4: 329.0749; found: 329.0746.
(20) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett.
2005, 7, 1967.
(21) In addition to the cinchona derivatives, we performed a
series of experiments with the thiourea catalyst developed by
Takamoto.6,8 With this organocatalyst, the reaction between
thiophenol and (Z)-7a yielded the products in a
diastereomeric ratio of 95:5 in CH2Cl2 but both isomers were
formed in an unsatisfactory ee (i.e., 70% ee for the major
diastereomer and 36% for the minor isomer). With
4-methoxybenzylthiol as the nucleophile, the reaction with
the (Z)-7a catalyzed by the Takamoto thiourea led to the
formation of products in a diastereomer ratio of 63:37 and in
poor enantioselectivity (25% ee for the major isomer and
24% for the minor isomer).
(10) (a) Enders, D.; Luettgen, K.; Narine, A. A. Synthesis 2007,
959. (b) Tian, X.; Cassani, C.; Liu, Y. K.; Moran, A.;
Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am.
Chem. Soc. 2011, 133, 17934. (c) Dai, L.; Yang, H. J.; Chen,
F. Eur. J. Org. Chem. 2011, 5071. (d) Pei, Q.-L.; Sun, H.-
W.; Wu, Z.-J.; Du, X.-L.; Zhang, X.-M.; Yuan, W.-C. J.
Org. Chem. 2011, 76, 7849. (e) Rana, N. K.; Selvakumar, S.;
Singh, V. K. J. Org. Chem. 2010, 75, 2089. (f) Rana, N. K.;
Singh, V. K. Org. Lett. 2011, 13, 6520.
(11) (a) Nagasawa, H. T.; Elberling, J. E.; Roberts, J. C. J. Med.
Chem. 1987, 30, 1373. (b) Nagai, U.; Pavone, V.
Heterocycles 1989, 28, 589. (c) Villeneuve, G.; Dimaio, J.;
Chan, T. H.; Michel, A. J. Chem. Soc., Perkin Trans. 1 1993,
1897.
(12) Crich, D.; Banerjee, A. J. Am. Chem. Soc. 2007, 129, 10064.
(13) (a) Plöchl, J. Ber. Dtsch. Chem. Ges. 1883, 16, 2815.
(b) Erlenmeyer, E. Justus Liebigs Ann. Chem. 1893, 275, 1.
(14) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 929.
(15) Weygand, F. Chem. Ber. 1954, 87, 248.
(16) (a) Weygand, F.; Steglich, W. Angew. Chem. 1961, 73, 433.
(b) Weygand, F.; Steglich, W.; Tanner, H. Justus Liebigs
Ann. Chem. 1962, 658, 128. (c) Weygand, F.; Steglich, W.;
Mayer, D.; von Philipsborn, W. Chem. Ber. 1964, 97, 2023.
(17) Breitholle, E. G.; Stammer, C. H. J. Org. Chem. 1976, 41,
1344.
(22) Synthesis of 12: Compound 7a (885 mg, 2.69 mmol) and
catalyst B (207 mg, 0.27 mmol) were dissolved in CH2Cl2
(13 mL). 4-methoxybenzylthiol (1.12 mL, 8.07 mmol) was
added and the resulting mixture was stirred overnight. The
product was concentrated and purified by column
chromatography (PE–EtOAc, 2:1), yielding a 33:67 mixture
of syn/anti-isomers of a slowly solidifying oil (1.24 g, 2.58
mmol, 96%). 1H NMR (400 MHz, CDCl3): δ = 7.53 (dd, J =
8.4, 1.6 Hz, 1 H), 7.41–7.32 (m, 3 H), 7.28–7.26 (m, 1 H),
7.16 (dd, J = 6.4, 2 Hz, 1.33 H), 7.10 (dd, J = 6.4, 2 Hz,
0.67 H), 7.00 (d, J = 9.6 Hz, 1 H), 6.87 (dd, J = 6.4, 2 Hz,
0.67 H), 6.84 (dd, J = 6.4, 2 Hz, 1.33 H), 6.33 (t, J = 7.6 Hz,
0.67 H), 6.02 (dd, J = 8.4, 5.2 Hz, 0.33 H), 4.46 (t, J = 8 Hz,
1.33 H), 4.36 (m, 0.33 H), 4.29 (d, J = 5.2 Hz, 0.33 H), 4.23
(d, J = 7.6 Hz, 0.67 H), 4.15 (m, 0.67 H), 4.06 (m, 0.67 H),
3.98–3.92 (m, 1.33 H), 3.83 (s, 1 H), 3.83 (s, 2 H), 3.73 (d,
J = 12.8 Hz, 0.67 H), 3.65–3.60 (m, 0.67 H), 3.34 (d,
J = 13.6 Hz, 0.33 H); 13C NMR (100 MHz, CDCl3): δ =
168.6, 168.2, 158.9, 158.8, 156.6 (q, J = 38 Hz), 156.5 (q,
J = 38 Hz), 152.9, 152.5, 136.8, 136.3, 130.2, 130.1, 129.3,
129.1, 128.9, 128.7, 128.7, 128.6, 128.5, 128.4, 128.3,
121.6, 115.5 (q, J = 286 Hz), 113.9, 62.6, 62.4, 56.4, 55.3,
54.1, 50.7, 49.4, 42.6, 42.5, 35.4, 34.6; IR (neat): 3319,
1779, 1728, 1698, 1537, 1214, 1173, 702 cm–1; HRMS
(FAB): m/z [M + H]+ calcd for C22H22F3N2O5S: 483.1202;
found: 483.1207; HPLC [Daicel Chiralcel AD; i-PrOH–
heptane, 15:85 (0–40 min) then 30:70 (40–120 min); 1.0
mL/min; λ = 220nm]: tR (major diastereoisomer) = 21.5
(minor), 110.8 (major) min; tR (minor diastereoisomer) =
14.9 (minor), 21.5 (major) min. Recrystallization of the
crude product (EtOAc–PE) gave the minor syn-isomer as a
racemate (120 mg, 0.25 mmol, 9%). The mother liquor was
concentrated and further recrystallized (EtOAc–PE) to give
the anti-isomer as a pure enantiomer (503 mg, 1.04 mmol,
39%). Mp 142–144 °C; [α]D –203.4 (c = 0.42, MeOH). 1H
NMR (400 MHz, CDCl3): δ = 7.35 (m, 3 H), 7.28 (m, 2 H),
(18) The same observation was reported by the group of
Stammer, see ref. 17.
(19) Synthesis of 7: Oxazolidinone (5.0 g, 57.4 mmol, 2.3 equiv)
was dissolved in anhydrous THF (250 mL), and NaH (1.3 g,
55 mmol, 2.2 equiv) was added in portions. The resulting
mixture was stirred for 30 min, then a solution of 5a (8.0 g,
25 mmol, 1 equiv) in anhydrous THF (50 mL) was added
dropwise and stirring was continued for 30 min. Saturated
NH4Cl was added and the resulting mixture was extracted
three times with EtOAc. The organic layers were combined,
washed with brine and dried with MgSO4. The product was
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 2195–2200