In summary, we have demonstrated that unprecedented
1,5-rhodium migration occurs using substrates with a simple
skeleton. The process enables generation of difficult-to-access
arylrhodium species via remote C–H activation. We anticipate
that 1,5-rhodium migration will be used as extensively as
1,4-rhodium migration in designing catalytic reaction after
further optimization.24
and M. Murakami, J. Am. Chem. Soc., 2005, 127, 1390;
(c) R. Shintani, K. Okamoto and T. Hayashi, J. Am. Chem. Soc.,
2005, 127, 2872; (d) H. Yamabe, A. Mizuno, H. Kusama and
N. Iwasawa, J. Am. Chem. Soc., 2005, 127, 3248; (e) T. Matsuda,
M. Makino and M. Murakami, Angew. Chem., Int. Ed., 2005, 44, 4608;
(f) R. Shintani and T. Hayashi, Org. Lett., 2005, 7, 2071; (g) T. Miura,
M. Shimada and M. Murakami, Chem.–Asian J., 2006, 1, 868;
(h) R. Shintani, K. Yashio, T. Nakamura, K. Okamoto, T. Shimada
and T. Hayashi, J. Am. Chem. Soc., 2006, 128, 2772; (i) R. Shintani,
K. Takatsu and T. Hayashi, Angew. Chem., Int. Ed., 2007, 46, 3735;
(j) R. Shintani, K. Takatsu, T. Katoh, T. Nishimura and T. Hayashi,
Angew. Chem., Int. Ed., 2008, 47, 1447; (k) R. Shintani, S. Isobe,
M. Takeda and T. Hayashi, Angew. Chem., Int. Ed., 2010, 49, 3795;
(l) K. Sasaki, T. Nishimura, R. Shintani, E. A. B. Kantchev and
T. Hayashi, Chem. Sci., 2012, 3, 1278; (m) K. Sasaki and T. Hayashi,
Tetrahedron: Asymmetry, 2012, 23, 373.
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas ‘‘Molecular Activation Directed
toward Straightforward Synthesis’’ from MEXT, Japan. We
also thank the Instrumental Analysis Center, Faculty of
Engineering, Osaka University, for assistance with the HRMS
analyses. We thank the reviewers for their insightful comments
on the electronic effects.
9 (a) A. J. Mota, A. Dedieu, C. Bour and J. Suffert, J. Am. Chem.
Soc., 2005, 127, 7171; (b) C. Bour and J. Suffert, Org. Lett., 2005,
7, 653; (c) R. Shintani, H. Otomo, K. Ota and T. Hayashi, J. Am.
Chem. Soc., 2012, 134, 7305.
Notes and references
10 (a) M. Tobisu, Y. Kita and N. Chatani, J. Am. Chem. Soc., 2006,
128, 8152; (b) M. Tobisu, Y. Kita, Y. Ano and N. Chatani, J. Am.
Chem. Soc., 2008, 130, 15982; (c) M. Tobisu, R. Nakamura,
Y. Kita and N. Chatani, J. Am. Chem. Soc., 2009, 131, 3174;
(d) M. Tobisu, R. Nakamura, Y. Kita and N. Chatani, Bull.
Korean Chem. Soc., 2010, 31, 582; (e) Y. Kita, M. Tobisu and
N. Chatani, Org. Lett., 2010, 12, 1864.
1 Reviews: (a) S. Ma and Z. Gu, Angew. Chem., Int. Ed., 2005,
44, 7512; (b) F. Shi and R. C. Larock, Top. Curr. Chem., 2010,
292, 123.
2 Selected examples of vinyl to aryl 1,4-migration of palladium:
(a) Q. Tian and R. C. Larock, Org. Lett., 2000, 2, 3329;
(b) J. Zhao and R. C. Larock, J. Org. Chem., 2006, 71, 5340.
3 Selected examples of aryl to aryl 1,4-migration of palladium:
(a) M. A. Campo and R. C. Larock, J. Am. Chem. Soc., 2002,
124, 14326; (b) G. Karig, M.-T. Moon, N. Thasana and T. Gallagher,
Org. Lett., 2002, 4, 3115; (c) M. A. Campo, Q. Huang, T. Yao, Q. Tian
and R. C. Larock, J. Am. Chem. Soc., 2003, 125, 11506; (d) Q. Huang,
M. A. Campo, T. Yao, Q. Tian and R. C. Larock, J. Org. Chem., 2004,
69, 8251; (e) D. Masselot, J. P. H. Charmant and T. Gallagher, J. Am.
Chem. Soc., 2005, 128, 694; (f) M. A. Campo, H. Zhang, T. Yao,
A. Ibdah, R. D. McCulla, Q. Huang, J. Zhao, W. S. Jenks and
R. C. Larock, J. Am. Chem. Soc., 2007, 129, 6298.
4 Selected examples of alkyl to aryl 1,4-migration of palladium:
(a) G. Bocelli, M. Catellani and G. P. Chiusoli, J. Organomet.
Chem., 1984, 279, 225; (b) L. Wang, Y. Pan, X. Jiang and H. Hu,
Tetrahedron Lett., 2000, 41, 725; (c) Q. Huang, A. Fazio, G. Dai,
M. A. Campo and R. C. Larock, J. Am. Chem. Soc., 2004,
126, 7460.
5 Selected examples of aryl to alkyl 1,4-migration of palladium:
(a) G. Dyker, Chem. Ber., 1994, 127, 739; (b) O. Baudoin,
´
A. Herrbach and F. Gueritte, Angew. Chem., Int. Ed., 2003,
42, 5736; (c) T. E. Barder, S. D. Walker, J. R. Martinelli and
S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685; (d) J. Hitce,
P. Retailleau and O. Baudoin, Chem.–Eur. J., 2007, 13, 792;
(e) S. R. Taylor, A. T. Ung and S. G. Pyne, Tetrahedron, 2007,
63, 10889; (f) T. Kesharwani and R. C. Larock, Tetrahedron, 2008,
64, 6090.
11 See ESIw for details.
12 Reviews on C–CN bond activation: (a) M. Tobisu and N. Chatani,
Chem. Soc. Rev., 2008, 37, 300; (b) Y. Nakao, Bull. Chem. Soc.
Jpn., 2012, 85, 731.
13 Diphenylmethane and diphenyl ether exhibit no significant differ-
ences in ring rotation energy and Ph–X–Ph bond angles (X = CH2
and O): M. Feigel, J. Mol. Struct., 1996, 366, 83. The decreased
product ratio for 1,5-migration in 1h may be attributed to other
factors, such as an electronic or coordinating effect imposed by an
oxygen atom.
14 Alkyl C–CN bonds can be cleaved under the influence of silylrho-
dium species. See ref. 10b–d.
15 J. Zhou, J. He, B. Wang, W. Yang and H. Ren, J. Am. Chem. Soc.,
2011, 133, 6868.
16 The identified products are normal silylation (8%), reductive
decyanation (15%) and recovered 8 (55%). See ESIw for details.
17 (a) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev.,
2010, 110, 624; (b) J. Bouffard and K. Itami, Top. Curr. Chem.,
2010, 292, 231.
18 This is one of the major mechanisms involved in palladium-
mediated C–H activation: (a) D. Garcıa-Cuadrado, A. A. C.
´
Braga, F. Maseras and A. M. Echavarren, J. Am. Chem. Soc.,
2006, 128, 1066; (b) M. Lafrance, C. N. Rowley, T. K. Woo and
K. Fagnou, J. Am. Chem. Soc., 2006, 128, 8754; (c) D. Lapointe
and K. Fagnou, Chem. Lett., 2010, 1118.
6 Other examples of 1,4-migration of palladium: (a) J. Zhao, M. Campo
and R. C. Larock, Angew. Chem., Int. Ed., 2005, 44, 1873; (b) J. Zhao,
D. Yue, M. A. Campo and R. C. Larock, J. Am. Chem. Soc., 2007,
129, 5288; (c) T. Kesharwani, A. K. Verma, D. Emrich, J. A. Ward and
R. C. Larock, Org. Lett., 2009, 11, 2591.
19 Acidic C–H bonds favor the formation of 1,4-migration products
in palladium catalysis. See ref. 3f.
20 Computational studies suggest that the favored mechanism in the
1,n-migration of palladium depends on the number n:
(a) A. J. Mota and A. Dedieu, Organometallics, 2006, 25, 3130;
(b) A. J. Mota and A. Dedieu, J. Org. Chem., 2007, 72, 9669.
21 Selected examples of rhodium-catalyzed C–H activation, in which
electron-deficient or acidic C–H bonds react preferentially:
(a) Z.-M. Sun, J. Zhang, R. S. Manan and P. Zhao, J. Am. Chem.
Soc., 2010, 132, 6935; (b) T. K. Hyster and T. Rovis, J. Am. Chem.
Soc., 2010, 132, 10565; (c) G. Song, D. Chen, C.-L. Pan,
R. H. Crabtree and X. Li, J. Org. Chem., 2010, 75, 7487;
(d) N. Umeda, K. Hirano, T. Satoh, N. Shibata, H. Sato and
M. Miura, J. Org. Chem., 2011, 76, 13.
7 Selected examples of alkyl to aryl 1,4-rhodium migration:
(a) K. Oguma, M. Miura, T. Satoh and M. Nomura, J. Am. Chem.
Soc., 2000, 122, 10464; (b) T. Matsuda, M. Shigeno, M. Makino and
M. Murakami, Org. Lett., 2006, 8, 3379; (c) T. Matsuda, M. Shigeno
and M. Murakami, J. Am. Chem. Soc., 2007, 129, 12086;
(d) J. Panteleev, F. Menard and M. Lautens, Adv. Synth. Catal.,
2008, 350, 2893; (e) T. Seiser, O. A. Roth and N. Cramer, Angew.
Chem., Int. Ed., 2009, 48, 6320; (f) M. Shigeno, T. Yamamoto and
M. Murakami, Chem.–Eur. J., 2009, 15, 12929; (g) T. Seiser,
G. Cathomen and N. Cramer, Synlett, 2010, 1699; (h) T. Seiser and
N. Cramer, Angew. Chem., Int. Ed., 2010, 49, 10163; (i) N. Cramer
and T. Seiser, Synlett, 2011, 449; (j) T. Matsuda, Y. Suda and
A. Takahashi, Chem. Commun., 2012, 48, 2988.
´
22 M. Tobisu, H. Kinuta, Y. Kita, E. Remond and N. Chatani,
J. Am. Chem. Soc., 2012, 134, 115.
23 G. Zou, J. Guo, Z. Wang, W. Huang and J. Tang, Dalton Trans.,
8 Selected examples of vinyl to aryl 1,4-rhodium migration:
(a) T. Hayashi, K. Inoue, N. Taniguchi and M. Ogasawara, J. Am.
Chem. Soc., 2001, 123, 9918; (b) T. Miura, T. Sasaki, H. Nakazawa
2007, 3055.
24 B.-H. Tan, J. Dong and N. Yoshikai, Angew. Chem., Int. Ed., 2012,
51, 9610.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 11437–11439 11439