Page 3 of 5
Journal of the American Chemical Society
1
2
3
4
28, WSC, HOBt, Et3N, DMF, 0oC-r.t., 60% in 2 steps. (g) SO3-
pyridine, pyridine, 40oC, 75%. (h) HF-pyridine, CH3CN, 0oC-r.t.,
57%, 91%brsm. (i) Pd(OH)2, H2, MeOH, r.t., 98%.
5
6
7
8
In summary, we achieved the first total synthesis of aeru-
ginosin 98B in eight steps from the four fragments (Choi, -
D
allo-Ile, Hpla and agmatine). After the construction of aeru-
ginosin core, sulfonic acid was directly introduced by treat-
ment with SO3-pyridine complex. In the preparation of Choi
fragment, a Pd-catalyzed intramolecular AAA reaction of a
diastereomeric mixture of allyl carbonates 9a and 9b using
racemic ligand L1 provided hexahydroindole derivative 19a in
high diastreo- and enantioselectivity wherein the asymmetry
derived from 3-iodo-S-alanine. Curiously, higher reactivity of
the racemic mixture of the chiral ligands suggests that each
enantiomer of the racemic ligand might have recognized the
matched diastereomer of 9a and 9b imparting better kinetics
for ionization but the substrate controls the diastereoselectivity.
We are currently exploring the precise reaction mechanism
that explains the observed diastereo- and enantioselectivity.
9
10
11
12
13
14
a(a) AD-mix α, MeSO2NH2, t-BuOH/H2O=1/1. 0oC, 23a; 86%,
>99%ee, 23b; 91%, 98%ee. (b) Et3SiH, TFA, CH2Cl2, r.t., 24a;
80%, 24b; 82%. (c) 25a; TIPSCl, imidazole, DMAP, CH2Cl2, r.t.,
79%, 25b; BnBr, Ag2O, TBAI, PhH, reflux, >63%. (d) N, N'-
bis(benzyloxycarbonyl)-1H-pyrazole-1-carboxamidine, THF, r.t.,
65%. (e) TFA, CH2Cl2, 0oC, 95%.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Ethyl ester 25a was hydrolyzed with 1N LiOH aq, and the
resulting carboxylic acid was coupled with -allo-Ile methyl
D
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and analytical data for all new com-
pounds. This material is available free of charge via the Internet
ester (29) to afford dipeptide 30 in 73% yield (Scheme 3).
Subsequent hydrolysis of the ester of 30 and the following
peptide coupling with Choi fragment 21 provided tripeptide
31 in 69% yield. The tetrapeptide 32 was prepared in the same
manner as the synthesis of tripeptide 31, using agmatine frag-
ment 28. For the introduction of the sulfonic acid group, sulfur
trioxide pyridine complex was used to afford sulfonic acid 33
in 75% yield. Removal of TIPS group was accomplished by
treatment with HF-pyridine complex in acetonitrile to provide
access to the precursor 34. The removal of Bn and Cbz groups
provided aeruginosin 98B (1) in quantitive yield. The crude
material was purified by reverse phase HPLC to afford pure
aeruginosin 98B (1) in 98% yield as a colorless solid. The 1H-
and 13C-NMR spectra matched those of the natural product.
Surprisingly, the optical rotation of synthetic 1 was higher (-
11.24, c 0.25, H2O) than the natural product (-5.24, c 0.25,
H2O).
AUTHOR INFORMATION
Corresponding Author
Barry M. Trost
ACKNOWLEDGMENT
We thank the National Institutes of Health (GM 033049) and
Teijin Pharma Ltd for their generous support of our program.
REFERENCES
Scheme 3. Total synthesis of Aeruginosin 98B.a
(1) Murakami, M.; Ishida, K.; Okino, T.; Okita, Y.; Matsuda, H.;
Yamaguchi, K. Tetrahedron Lett. 1995, 36, 2785. (b) For a
review see Ersmark, K.; Del Valle, J. R.; Hanessian, S. An-
gew. Chem. Int. Ed. 2008, 47, 1202.
(2) Sandler, B.; Murakami, M.; Clardy, J. J. Am. Chem. Soc.
1998, 120, 595.
(3) (a) Valls, N.; Lopez -Canet, M.; Vallribera, M.; Bonjoch, J.
Chem. Eur. J. 2001, 7, 3446. (b) Wipf, P.; Methot, J.-L. Org.
Lett. 2000, 2, 4213. (c) Ohshima, T.; Gnanadesikan, V.;
Shibuguchi, T.; Fukuta, Y.; Nemoto, T.; Shibasaki, M. J. Am.
Chem. Soc. 2003, 125, 11206.
(4) (a) Konetschny-Rapp, S.; Krell, H.-W.; Martin, U. PCT
WO96/11941, 1996. (b) Engh, R.; Konetschny-Rapp, S.;
Krell, H.-W.; Martin, U.; Tsaklakidis, C. PCT WO97/21725,
1997
(5) Hannesian, S.; Wang, X.; Ersmark, K.; Del Valle, J. R.;
Klegraf, E. Org. Lett., 2009, 11, 4232.
(6) Steiner, J. L. R.; Murakami, M.; Tulinsky, A. J. Am. Chem.
Soc. 1998, 120, 597.
(7) Hanessian, S.; Tremblay, M.; Petersen, J. F. W. J. Am. Chem.
Soc. 2004, 126, 6064.
(8) (a) Radau, G; Schermuly, S; Fritsche, A. Arch. Pharm.
Pharm. Med. Chem. 2003, 336, 300. (b) Hanessian, S; Ers-
mark, K; Wang, X; Del Valle, J. R.; Blomberg, N.; Xuec, Y.;
FjellströM, O. Bioorg. Med. Chem. Lett. 2007, 17, 3480. (c)
a(a) 1N LiOHaq, THF/MeOH=3/2, r.t. (b)
-allo-Isoleucine me-
D
thyl ester (29), TBTU, Et3N, DMF, r.t. 73% in 2 steps. (c) 1N
LiOHaq, THF/MeOH=3/2, r.t. (d) 21, WSC, HOBt, Et3N, DMF,
0oC-r.t., 69% in 2 steps. (e) 1N LiOHaq, THF/MeOH=3/2, r.t. (f)
ACS Paragon Plus Environment