Page 5 of 6
Journal of the American Chemical Society
A Simple Preparation of Trimethylsilylacetonitrile and a Novel Ring-
(24) For the preparation and application of (tert-
butylsilyl)acetonitrile (1d), see: Furuta, K.; Ishiguro, M.; Haruta, R.;
Ikeda, N.; Yamamoto, H. Regio- and Stereocontrolled Synthesis of
Allenic and Acetylenic Derivatives. Organotitanium and Boron
Reagents. Bull. Chem. Soc. Jpn. 1984, 57, 2768.
Opening of Epoxides with Trimethylsilylacetonitrile Anion. J. Chem.
Soc., Perkin Trans. 1, 1979, 26. (b) Kawano, Y.; Fujisawa, H.;
Mukaiyama, T. Lewis Base-Catalyzed Cyanomethylation of Aldimines
with Trimethylsilylacetonitrile. Chem. Lett. 2005, 34, 1134. (c)
Kawano, Y.; Kaneko, N.; Mukaiyama, T. Lewis Base-Catalyzed
1
2
3
4
(25) Attempts to utilize acetonitrile (2 equiv) with a variety of other
bases and temperatures failed to provide any product.
Cyanomethylation
of
Carbonyl
Compounds
with
5
6
7
8
(Trimethylsilyl)acetonitrile. Chem. Lett. 2005, 34, 1508.
(15) For an example of forming the lithiated TMSAN anion using
nBuLi, followed by cleavage of the TMS, see: D’hooghe, M.; Vervisch,
(26) (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V.
K. Enantiodivergent Conversion of Chiral Secondary Alcohols into
Tertiary Alcohols. Nature 2008, 456, 778. (b) Bagutski, V.; French, R.
M.; Aggarwal, V. K. Full Chirality Transfer in the Conversion of
Secondary Alcohols into Tertiary Boronic Esters and Alcohols using
Lithiation-Borylation Reactions. Angew. Chem., Int. Ed. 2010, 49,
5142.
K.;
De
Kimpe,
N.
Synthesis
of
1-Arylmethyl-2-(2-
9
cyanoethyl)aziridines and their Rearrangement into Novel 2-
(Aminomethyl)cyclopropanecarbonitriles. J. Org. Chem. 2007, 72,
7329.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) For an example of the formation of TMSAN anion via cleavage
of the carbon-silicon bond using a fluoride source, see: Palomo, C.;
Aizpurua, J. M.; López, M. C.; Lecea, B. Fluoride-ion Mediated
Reaction Between Trimethylsilylacetonitrile and Carbonyl
Compounds. A New Synthesis of -Trimethylsilyloxy Nitriles. J.
Chem. Soc., Perkin Trans. I, 1989, 1692.
(17) For select examples of TMSAN undergoing a 1,4-addition in
the absence of copper, see: (a) Tomioka, K.; Koga, K. Conjugate
Addition Reaction of Trimethylsilylacetonitrile with α,β-Unsaturated
Carbonyl Compounds. Synthetic Studies Toward Sesbanimide.
Tetrahedron Lett. 1984, 25, 1599. (b) Paquette, L. A.; Friedrich, D.;
Pinard, E.; Williams, J. P.; St. Laurent, D.; Roden, B. A. Total
Synthesis of the Tetracyclic Diquinane Lycopodium Alkaloids
Magellanine and Magellaninone. J. Am. Chem. Soc. 1993, 115, 4377.
(c) Yuan, C.; Chang, C.-T.; Axelrod, A.; Siegel, D. Synthesis of (+)-
Complanadine A, an Inducer of Neurotrophic Factor Excretion. J. Am.
Chem. Soc. 2010, 132, 5924.
(18) TMSAN has been used for an enantioselective copper-catalyzed
cyanomethylation of acetophenone to furnish the corresponding -
hydroxy nitrile in 48% yield and 49% ee, see: Suto, Y.; Kumagai, N.;
Matsunaga, S.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 3147.
(19) The palladium-catalyzed α-arylation of TMSAN (1a) using zinc
fluoride has been reported, see: Wu, L.; Hartwig, J. F. Mild Palladium-
Catalyzed Selective Monoarylation of Nitriles. J. Am. Chem. Soc. 2005,
127, 15824.
(20) For select examples of the preparation of β-ternary ketones,
see: (a) Evans, P. A.; Leahy, D. K. Regioselective and Enantiospecific
Rhodium-Catalyzed Allylic Alkylation Reactions Using Copper(I)
Enolates: Synthesis of (–)-Sugiresinol Dimethyl Ether. J. Am. Chem.
Soc. 2003, 125, 8974. (b) Graening, T.; Hartwig, J. F. Iridium-
Catalyzed Regio- and Enantioselective Allylation of Ketone Enolates.
J. Am. Chem. Soc. 2005, 127, 17192. (c) Weix, D. J.; Hartwig, J. F.
Regioselective and Enantioselective Iridium-Catalyzed Allylation of
Enamines. J. Am. Chem. Soc. 2007, 129, 7720. (d) Chen, M.; Hartwig,
J. F. Iridium-Catalyzed Enantioselective Allylic Substitution of
Unstabilized Enolates Derived from α,β-Unsaturated Ketones. Angew.
Chem., Int. Ed. 2014, 53, 8691. (e) Chen, M.; Hartwig, J. F. Iridium-
Catalyzed Regio- and Enantioselective Allylic Substitution of Silyl
Dienolates Derived from Dioxinones. Angew. Chem., Int. Ed. 2014, 53,
12172. (f) Chen, M.; Hartwig, J. F. Iridium-Catalyzed Enantioselective
Allylic Substitution of Enol Silanes from Vinylogous Esters and
Amides. J. Am. Chem. Soc. 2015, 137, 13972.
(27) The term conservation of enantiomeric excess (cee) = (ee of
product ÷ ee of starting material) × 100. For details, please see: Evans,
P. A.; Robinson, J. E.; Nelson, J. D. Enantiospecific Synthesis of
Allylamines via the Regioselective Rhodium-Catalyzed Allylic
Amination Reaction. J. Am. Chem. Soc. 1999, 121, 6761.
(28) Jung, B.; Hoveyda, A. H. Site- and Enantioselective Formation
of Allene-Bearing Tertiary or Quaternary Carbon Stereogenic Centers
through NHC–Cu-Catalyzed Allylic Substitution. J. Am. Chem. Soc.
2012, 134, 1490.
(29) For the stereospecific rhodium-catalyzed allylic substitution
employing acyl anion equivalents, see: (a) Evans, P. A.; Oliver, S.;
Chae, J. Rhodium-Catalyzed Allylic Substitution with an Acyl Anion
Equivalent: Stereospecific Construction of Acyclic Quaternary Carbon
Stereogenic Centers. J. Am. Chem. Soc. 2012, 134, 19314. (b) Evans,
P. A.; Oliver, S. Regio- and Enantiospecific Rhodium-Catalyzed
Allylic Substitution with an Acyl Anion Equivalent. Org. Lett. 2013,
15, 5626. (c) Turnbull, B. W. H.; Oliver, S.; Evans, P. A. Stereospecific
Rhodium-Catalyzed Allylic Substitution with Alkenyl Cyanohydrin
Pronucleophiles: Construction of Acyclic Quaternary Substituted α,-
Unsaturated Ketones. J. Am. Chem. Soc. 2015, 137, 15374.
(30) For the synthesis of (+)-epilaurene (8), see: (a) Fadel, A.; Canet,
J.-L.; Salaün, J. Asymmetric Construction of Quaternary Carbons from
Chiral Malonates: Total Syntheses of (+)-Epilaurene and (–)-
Isolaurene. Tetrahedron: Asymmetry 1993, 4, 27. For the synthesis of
(+)-α-cuparenone (9), see: (b) Kametani, T.; Kawamura, K.; Tsubuki,
M.; Honda, T. Synthetic Approach to (–)-Cuparenone by Rhodium-
Catalyzed Cyclization. Chem. Pharm. Bull. 1985, 33, 4821. (c) Kumar,
R.; Halder, J.; Nanda, S. Asymmetric Total Synthesis of (R)-α-
Cuparenone, (S)-Cuparene and Formal Synthesis of (R)-β-Cuparenone
through Meinwald Rearrangement and Ring Closing Metathesis
(RCM) Reaction. Tetrahedron 2017, 73, 809.
(21) For select examples for the preparation of β-ternary amides,
esters and aldehydes, see: (a) Sempere, Y.; Carreira, E. M. Trimethyl
Orthoacetate and Ethylene Glycol Mono-Vinyl Ether as Enolate
Surrogates in Enantioselective Iridium-Catalyzed Allylation. Angew.
Chem., Int. Ed. 2018, 57, 7654. (b) Sempere, Y.; Alfke, J. L.; Rössler,
S. L.; Carreira, E. M. Morpholine Ketene Aminal as Amide Enolate
Surrogate in Iridium-Catalyzed Asymmetric Allylic Alkylation.
Angew. Chem., Int. Ed. 2019, 58, 9537.
(22) Evans, P. A.; Nelson, J. D. Conservation of Absolute
Configuration in the Acyclic Rhodium-Catalyzed Allylic Alkylation
Reaction: Evidence of an Enyl (σ + π) Organorhodium Intermediate. J.
Am. Chem. Soc. 1998, 120, 5581.
(23) The crude -silyl nitrile is obtained as a 1.5:1 mixture of
diastereoisomers prior to it cleavage with TBAF.
ACS Paragon Plus Environment