6884
Y. Zhang et al. / Tetrahedron Letters 53 (2012) 6881–6884
was also determined lonely (see Supplementary data). The inten-
sity of CH was 650, which was almost the same with the probe
after addition of MAO.
and Manufacturing Program (Grant 2009ZX09103-102), and the
Shanghai Leading Academic Discipline Project (B507).
Interestingly, the result of fluorescent test for CR2 was very dif-
ferent from what we expected before. The structure of CR2 is al-
most the same with CR1 but a substitution of methyl, according
to our assumption, the response of CR2 upon addition of MAO is
similar to CR1. (Fig. 3b) But to our surprise, the fluorescence inten-
sity was almost of no change with MAO-A and MAO-B. The reason
maybe the affinity of CR2 with MAOs was much weaker than CR1.
As we mentioned before, although the selectivity is still needed
to be improved, the sensitivity of this probe was increased more
compared with the other known probes. The concentration of this
Supplementary data
Supplementary data associated with this article can be found,
References and notes
1. (a) Shih, J. C.; Chen, K.; Ridd, M. J. Annu. Rev. Neurosci. 1999, 22, 197; (b) Carrieri,
A.; Barreca, M. L.; Altomare, C. J. Comput. Aided Mol. Des. 2002, 16, 769; (c)
Rendu, F.; Peoc’h, K.; Berlin, I.; Thomas, D.; Launay, J. Int. J. Environ. Res. Public
Health 2011, 8, 136.
2. Rendu, F.; Mattevi, A.; Binda, C.; Li, M.; Hubalek, F. Curr. Med. Chem. 1983, 2004,
11.
3. (a) Haung, R. H.; Faulkner, R. J. Biol. Chem. 1981, 256, 9211; (b) Corinne, B.;
Federic, O. J. Med. Chem. 2001, 3195; (c) Cohen, G.; Farooqui, R.; Kesler, N. Proc.
Natl. Acad. Sci. U.S.A. 1997, 94, 4890.
4. Bach, A. W.; Lan, N. C.; Johnson, D. L.; Abell, C. W.; Bembenek, M. E.; Kwan, S.
W.; Shih, J. C. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4934.
5. (a) Wouters, J. Curr. Med. Chem. 1998, 5, 137; (b) Grimsby, J.; Lan, N. C.; Neve, R.;
Chen, K.; Shih, J. C. J. Neurochem. 1990, 55, 1166.
6. Youdim, M. B.; Edmondson, D. E.; Tipton, K. F. Nat. Rev. Neurosci. 2006, 7, 295.
7. Francesco, G.; Nathalie, P.; Ordener, C.; Marchal-Victorion, S.; Maurel, A.;
Hofmann, R.; Renard, P.; Delagrange, P.; Pigini, M.; Parini, A.; Giannella, M. J.
Med. Chem. 2006, 49, 5578.
8. (a) Youdim, M.; Edmondson, D.; Tipton, K. Nat. Rev. Neurosci. 2006, 7, 295; (b)
Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M. B. H. Brain Res. Rev. 2005, 48, 379.
9. (a) Regina, G. L.; Silvestri, R.; Artico, M.; Lavecchia, A.; Novellino, E.; Befani, O.;
Turini, P.; Agostinelli, E. J. Med. Chem. 2007, 50, 922; (b) Pisani, L.; Muncipinto,
G.; Miscioscia, T. F.; Nicolotti, O.; Leonetti, F.; Catto, M.; Caccia, C.; Salvati, P.;
Soto-Otero, R.; Mendez-Alvarez, E.; Passeleu, C.; Carotti, A. J. Med. Chem. 2009,
52, 6685.
probe in the test was 1
than the most probes, even the lowest concentration of the known
probe (5 mol/L). On the other hand, the response time of sensing
lmol/L and 2 lmol/L which were lower
l
for MAO was tested which is another indicator of the sensitivity of
the probes. The result showed that after addition of the same con-
centration of MAO A (50
lg/mL), the fluorescence intensity of the
probe CR1 (5 mol/L) peaked at 1 min, which was much shorter
l
than the known probe (7.6
l
mol/L, 10–60 min).11 (See Supplemen-
tary data)
In conclusion, we have reported a novel and sensitive mono-
amine oxidase probe. Interestingly, this was the first time to report
a probe whose intensity could be increased by MAO-B but not
MAO-A at a lower concentration. The detailed reason maybe the
addition of the bulky group into the fluorophore which changes
the affinity with the MAO. Furthermore, the probe was a turn-on
probe for both MAO-A and MAO-B at high concentration. On the
other hand, the sensitivity of the probes was much enhanced than
that of the known probe. According to our research and the known
probes,10–13 a molecule with a propyl linker between the amine
substrate and fluorophore can be used as a selective, sensitive fluo-
rescent probe for MAO. So, this might be a good platform to build a
MAO-A and MAO-B distinguishable fluorescent probe.
10. Chen, G.; Yee, D. J.; Gubernator, N. G.; Sames, D. J. Am. Chem. Soc. 2005, 127,
4544.
11. Alber, A. E.; Rawls, K. A.; Chang, C. J. Chem. Commun. 2007, 4647.
12. Kim, D.; Sambasivan, S.; Nam, H.; Kim, K. H.; Kim, J. Y.; Joo, T.; Lee, K.; Kim, K.;
Ahn, K. H. Chem. Commun. 2012, 48, 6833.
13. (a) Lu, Y. Y.; Wang, Y. G.; Dai, B.; Dai, Y. Q.; Wang, Z.; Fu, Z. W.; Zhu, Z. W. Chin.
Chem. Lett. 2008, 19, 947; (b) Long, S.; Chen, L.; Xiang, Y.; Song, M.; Zheng, Y.;
Zhu, Q. Chem. Commun. 2012, 48, 7164.
14. (a) Sethi, D.; Chen, C.; Jing, R.; Thakur, M. L.; Wickstrom, E. Bioconjugate Chem.
2012, 23, 158; (b) Yamaguchi, K.; Ueki, R.; Nonaka, H.; Sugihara, F.; Matsuda,
T.; Sando, S. J. Am. Chem. Soc. 2011, 33, 14208.
Acknowledgments
15. Matos, M. J.; Vina, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.;
Uriarte, E. Bioorg. Med. Chem. Lett. 2009, 19, 3268.
16. Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yanez, M.; Fraiz, N.; Alcaide, C.;
Cano, E.; Orallo, F. Bioorg. Med. Chem. Lett. 2006, 16, 257.
We are grateful for the financial support from the National Basic
Research Program of China (973 Program, 2010CB126100), the
China 111 Project (Grant B07023), the Key New Drug Creation