5 (a) J. E. Leffler and R. D. Temple, J. Am. Chem. Soc., 1967, 89,
5235–5246; (b) W. Q. Tian and Y. A. Wang, J. Org. Chem., 2004,
69, 4299–4308; (c) F. L. Lin, H. M. Hoyt, H. van Halbeek,
R. G. Bergmann and C. R. Bertozzi, J. Am Chem. Soc., 2005,
127, 2686–2695.
6 Ph3PNMes: (a) A. T. Katritzky, N. M. Khashab and S. Bobrov,
Helv. Chim. Acta, 2005, 88, 1664–1675; See however: (b) S. Bittner,
M. Pomerantz, Y. Assaf, P. Krief, S. Xi and M. K. Witczak,
J. Org. Chem., 1988, 53, 1–5; (c) P. Molina, C. Lopez-Leonardo,
J. Llamas-Botı
J. Chem. Soc., Chem. Commun., 1995, 1387–1389; (d) J. Kova
I. Pinter, M. Katjar-Peredy and L. Somsak, Tetrahedron, 1997, 53,
15041–15050.
´
a, C. Foces-Foces and C. Fernandez-Castano,
´
cs,
´
´
´
7 Review: D. W. Stephan and G. Erker, Angew. Chem., 2010, 122,
50–81 (Angew. Chem., Int. Ed., 2010, 49, 46–76).
8 (a) P. Spies, G. Erker, G. Kehr, K. Bergander, R. Frohlich,
¨
S. Grimme and D. W. Stephan, Chem. Commun., 2007,
5072–5074; (b) P. Spies, G. Kehr, K. Bergander, B. Wibbeling,
R. Frohlich and G. Erker, Dalton Trans., 2009, 1534–1541;
¨
(c) K. V. Axenov, C. M. Momming, G. Kehr, R. Frohlich and
¨
¨
G. Erker, Chem.–Eur. J., 2010, 16, 14069–14073; (d) S. Schwendemann,
R. Frohlich, G. Kehr and G. Erker, Chem. Sci., 2011, 2,
¨
1842–1849.
Scheme 4
9 See for a comparison: (a) M. W. P. Bebbington, S. Bontemps,
G. Bouhadir and D. Bourissou, Angew. Chem., 2007, 119,
3397–3400 (Angew. Chem., Int. Ed., 2007, 46, 3333–3336);
It was again formed together with the indazole derivative 7
(thermolysis of 5b also gave 6b + 7, but not as cleanly, see the
ESIw). Compound 6b shows a single set of 19F NMR features
of the pair of C6F5 substituents at boron and the 1H/13C NMR
signals of the mesityl substituent pair at phosphorus. The
(b) C. M. Momming, G. Kehr, B. Wibbeling, R. Frohlich and
¨
¨
G. Erker, Dalton Trans., 2010, 39, 7556–7564; (c) A. Stute,
G. Kehr, R. Frohlich and G. Erker, Chem. Commun., 2011, 47,
¨
4288–4290.
10 (a) C. Rosorius, G. Kehr, R. Frohlich, S. Grimme and
[P]QNH 1H NMR signal occurs at d = 2.80 (d) with a 2JPH
=
¨
12.1 Hz coupling constant. Compound 6b shows the core hetero-
nuclei NMR resonances at d = ꢀ4.6 (11B) and d = 50.7 (31P),
respectively. The compound was characterized by X-ray diffrac-
tion (for details see the ESIw and Table 1).
Although a detailed mechanistic picture of this unusual
FLP variant of the Staudinger reaction will require additional
experimental evidence, the observed reactions may be ratio-
nalized by the pathway that is schematically depicted in
Scheme 4. This would involve initial heterolysis of the N–N
single bond in the azide adducts 5 to generate the ion pairs 9.14
Deprotonation at the benzylic position of the mesityl substi-
tuent would directly lead to the internally N-B stabilized
phosphinimines15 6 and open a viable pathway for the for-
mation of the indazole derivative 7 (see Scheme 4).
G. Erker, Organometallics, 2011, 30, 4211–4219; (b) C. Appelt,
H. Westenberg, F. Bertini, A. W. Ehlers, J. C. Slootweg,
K. Lammertsma and W. Uhl, Angew. Chem., 2011, 123,
4011–4014 (Angew. Chem., Int. Ed., 2011, 50, 3925–3928);
(c) S. Roters, C. Appelt, H. Westenberg, A. Hepp, J. C.
Slootweg, K. Lammertsma and W. Uhl, Dalton Trans., 2012, 41,
9033–9045; (d) C. Appelt, J. C. Slootweg, K. Lammertsma and
W. Uhl, Angew. Chem., 2012, 124, 6013–6016 (Angew. Chem.,
Int. Ed., 2012, 51, 5911–5914).
11 M. W. P. Bebbington and D. Bourissou, Coord. Chem. Rev., 2009,
253, 1248–1261.
12 (a) M. Grun, K. Harms, R. Meyer zu Kocker and K. Dehnicke,
¨
Z. Anorg. Allg. Chem., 1996, 622, 1091–1096; (b) F. Heshmatpour,
D. Nunhar, R. Garbe, S. Wocadlo, W. Massa, K. Dehnicke,
H. Goesmann and D. Fenske, Z. Anorg. Allg. Chem., 1995, 621,
443–450. See also: (c) L. Braun, G. Kehr, R. Frohlich and G. Erker,
¨
Inorg. Chim. Acta, 2008, 361, 1668–1675; (d) K. Spannhoff, R. Rojas,
R. Frohlich, G. Kehr and G. Erker, Organometallics, 2011, 30,
¨
2377–2384.
The reaction of the two examples of the intramolecular
vicinal FLPs 4 and 8 with mesityl azide followed by thermo-
lysis or photolysis, respectively, has opened pathways to an
unusual variant of the Staudinger reaction. This indicates the
power that the active Lewis acid–Lewis base combination, as it
is characteristic of frustrated Lewis pair chemistry, has to
influence reactivity and to lead to new chemical reactions.16
Financial support from the European Research Council is
gratefully acknowledged.
13 (a) P. Molina, A. Arques and M. V. Vinader, J. Org. Chem., 1990,
55, 4724–4731; (b) P. Molina, A. Arques, I. Cartagena and
R. Obo
´
C. Conesa, A. Alı
n, Tetrahedron Lett., 1991, 32, 2521–2524; P. Molina,
as, A. Arques, M. D. Velasco, A. L. Llamas-Saiz
´
and C. Foces-Foces, Tetrahedron, 1993, 49, 7599–7612.
14 For a remotely related intramolecular C–H-activation pathway
see: (a) C. Dell’Erba, M. Novi, G. Petrillo and C. Tavani, Tetra-
hedron, 1992, 48, 325–334; (b) C. Dell’Erba, M. Novi, G. Petrillo
and C. Tavani, Tetrahedron, 1994, 50, 3529–3536.
15 (a) R. Appel and F. Vogt, Chem. Ber., 1962, 95, 2225–2231;
(b) W. K. Holley and G. E. Ryschkewitsch, Phosphorus, Sulfur Silicon
Relat. Elem., 1990, 53, 271–284; (c) O. Alhomaidan, E. Hollink and
D. W. Stephan, Organometallics, 2007, 26, 3041–3048; (d) N. Kano,
K. Yanaizumi, X. Meng and T. Kawashima, Heteroat. Chem., 2012,
Notes and references
1 H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 635–646.
2 Review articles on the Staudinger reaction: (a) Y. G. Gololobov,
I. N. Zhmurova and L. F. Kasukhin, Tetrahedron, 1981, 37,
437–472; (b) E. F. V. Scriven and K. Turnbull, Chem. Rev.,
1988, 88, 297–368; (c) Y. G. Gololobov and L. F. Kasuhkin,
Tetrahedron, 1992, 48, 1353–1406.
3 E. g.: K. J. Wallace, R. Hanes, E. Anslyn, J. Morey, K. V. Kilway
and J. Siegel, Synthesis, 2005, 12, 2080–2083.
4 (a) E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007–2010;
23, 429–434; (e) M. Mohlen, B. Neumuller, A. Dashti-Mommertz,
¨
¨
C. Muller, W. Massa and K. Dehnicke, Z. Anorg. Allg. Chem., 1999,
¨
625, 1631–1637.
16 See e.g. (a) C. M. Momming, E. Otten, G. Kehr, R. Frohlich,
¨
¨
S. Grimme, D. W. Stephan and G. Erker, Angew. Chem., 2009,
121, 6770–6773 (Angew. Chem., Int. Ed., 2009, 48, 6643–6646);
(b) E. Otten, R. C. Neu and D. W. Stephan, J. Am. Chem. Soc.,
2009, 131, 9918–9919; (c) A. J. P. Cardenas, B. J. Culotta,
T. H. Warren, S. Grimme, A. Stute, R. Frohlich, G. Kehr and
¨
G. Erker, Angew. Chem., 2011, 123, 7709–7713 (Angew. Chem.,
Int. Ed., 2011, 50, 7567–7571).
(b) M. Kohn and R. Breinbauer, Angew. Chem., 2004, 116,
¨
3168–3178 (Angew. Chem., Int. Ed., 2004, 43, 3106–3116).
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 11739–11741 11741