LETTER
Alkynyl Triazoles by Domino Click and Coupling
2181
click chemistry. Further research on the mechanism,
scope, and applications of this multicomponent reaction
are under way. In particular, the introduction of other sub-
stituents at the 5-position will be especially challenging.
D
Ph
Cu2O (1 mol%)
Ph
+
Ph
Br
N
N
NaN3, CD3OD, r.t.
N
1a
(1 equiv)
2a
(1 equiv)
Ph
4aa-d1
86% D
Acknowledgment
Scheme 2 Deuterium-labelling experiment
This work was generously supported by the Spanish Ministerio de
Ciencia e Innovación (MICINN; CTQ2007-65218 and Consolider
Ingenio 2010-CSD2007-00006), the Generalitat Valenciana (GV;
PROMETEO/2009/039), and Fondo Europeo de Desarrollo Regio-
nal (FEDER). Y. M. acknowledges the Instituto de Síntesis Orgáni-
ca (ISO) of the Universidad de Alicante for a grant.
In order to get an insight into the reaction mechanism, re-
agent-grade MeOH (99.8%), anhydrous MeOH (99.8%,
<0.002% water), and CD3OD were used as solvents under
different atmospheres in the title reaction. Conversions
>80% into 3aa, without byproduct formation, were only
achieved under the standard conditions (i.e., in the pres-
ence of air) independently of the methanol utilised. In
contrast, when the above solvents were subjected to de-
gasification, prior to the reaction, 3aa was produced in 1–
9%. Finally, substantial amounts of alkyne homocoupling
(21–25%) together with 3aa (67–70%) were recorded in
the presence of molecular oxygen (balloon). From these
results it can be inferred that the oxygen dissolved is ox-
idising copper in the catalytic cycle (Scheme 3). Given
that the reductive elimination from copper(II) species is
an unfavoured process,16 oxidation of copper(II) to cop-
per(III) and subsequent reductive elimination,17 with re-
generation of copper(I), is invoked as similarly suggested
by Porco et al.9 In addition, the equilibrium solubility of
oxygen in methanol seems to be the ideal one to drive the
reaction selectively toward the fully substituted triazole,
making unnecessary the use of a chemical oxidant.
Supporting Information for this article is available online at
r
t
iornat
References and Notes
(1) (a) Huisgen, R.; Knorr, R.; Moebius, L.; Szeimies, G. Chem.
Ber. 1965, 98, 4014. (b) Huisgen, R. Pure Appl. Chem. 1989,
61, 613.
(2) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057.
(3) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K.
B. Angew. Chem. Int. Ed. 2002, 41, 2596.
(4) For a review, see: Kolb, H. C.; Finn, M. G.; Sharpless, K. B.
Angew. Chem. Int. Ed. 2001, 40, 2004.
(5) For selected recent reviews and monographs, see:
(a) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
(b) Appukkuttan, P.; Van der Eycken, E. Eur. J. Org. Chem.
2008, 1133. (c) Amblard, F.; Cho, J. H.; Schinazi, R. F.
Chem. Rev. 2009, 109, 4207. (d) Click Chemistry for
Biotechnology and Materials Science; Lahann, J., Ed.; John
Wiley and Sons: Hoboken, 2009. (e) Finn, M. G.; Fokin, V.
V. In Catalysis Without Precious Metals; Morris Bullock, R.,
Ed.; Wiley-VCH: Weinheim, 2010, 235–260. (f) For a
special issue on applications of click chemistry, see: Chem.
Soc. Rev. 2010, 39, issue 4. (g) Quin, A.; Lam, J. W. Y.;
Tang, B. Z. Chem. Soc. Rev. 2010, 39, 2522. (h) Aragão-
Leoneti, V.; Campo, V. L.; Gomes, A. S.; Field, R. A.;
Carvalho, I. Tetrahedron 2010, 66, 9475.
(6) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.;
Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc.
2008, 130, 8923.
(7) For a perspective, including the synthesis of 5-halotriazoles,
see: Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem.
2010, 8, 4503.
[CuI]
R2
H
R2
NaX
N
N
N
R1
R2
[CuII]
R1
X
R2
+
Cu(I)
NaN3
N
N
N
R2
+
R1
R2
O2
[CuIII]
N
R2
R2
(8) (a) Wu, Y.-M.; Deng, J.; Li, Y.; Chen, Q.-Y. Synthesis 2005,
1314. (b) Deng, J.; Wu, Y.-M.; Chen, Q.-Y. Synthesis 2005,
2730.
(9) Gerard, B.; Ryan, J.; Beeler, A. B.; Porco, J. A. Jr.
Tetrahedron 2006, 62, 6405.
(10) Yang, D.; Fu, N.; Liu, Z.; Li, Y.; Chen, B. Synlett 2007, 278.
(11) Brunner, M.; Maas, G.; Klärner, F.-G. Helv. Chim. Acta
2005, 88, 1813.
H2O
R2
N
N
R1
N
N
N
R1
Scheme 3 Proposed catalytic cycle
(12) (a) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M.
Tetrahedron Lett. 2009, 50, 2358. (b) Alonso, F.; Moglie,
Y.; Radivoy, G.; Yus, M. Eur. J. Org. Chem. 2010, 1875.
(c) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Adv. Synth.
Catal. 2010, 352, 3208. (d) Alonso, F.; Moglie, Y.; Radivoy,
G.; Yus, M. Org. Biomol. Chem. 2011, 9, 6385. (e) Alonso,
F.; Moglie, Y.; Radivoy, G.; Yus, M. J. Org. Chem. 2011,
76, 8394. (f) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M.
Heterocycles 2012, 84, 1033.
In conclusion, a straightforward synthesis of fully substi-
tuted 1,2,3-triazoles with an alkynyl moiety at the 5-posi-
tion has been successfully introduced from organic
halides, terminal alkynes, and sodium azide, using a very
simple catalytic system composed of copper(I) oxide and
methanol under ambient conditions.18 This discovery will
be of great interest for the varied disciplines dealing with
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 2179–2182