Crystal Growth & Design
Article
Drug Delivery Rev. 2007, 59, 617−630. (c) Schultheiss, N.; Newman,
A. Cryst. Growth Des. 2009, 9, 2950−2967. (d) Chen, J.; Sarma, B.;
Evans, M. B. J.; Myerson, A. S. Cryst. Growth Des. 2011, 11, 887−897.
(e) Eddleston, M. D.; Jones, W. Cryst. Growth Des. 2010, 10, 365−370.
(f) David, S. E.; Timmins, P.; Conway, B. R. Drug Dev. Ind. Pharm.
2012, 38, 93−103.
solutions. As discussed earlier in the previous sections, only the
compositional variation led to the isolation of the three
multicomponent crystals, of which two are co-crystal
polymorphs and the third one is a salt with distinct
stoichiomerty of PAS and bpe (Scheme 1 and Table 3);
incidentally the reported polymorph 6a was isolated from
aqueous ethanolic medium.5b
The melting points of the PAS solid forms were found to
range between 120 and 170 °C and lie above the corresponding
starting materials (Table 3 and Figure S2). The Rietveld
analysis of powder XRD of solids, 1 through 6, confirm the
monophasic nature of the bulk samples (Figure S3 through S8).
The stretching mode of carbonyl group of free carboxylic acid is
intense in co-crystals 1, 2, 6 and 7, confirming the presence of
neutral species in these solid forms, and found to be weak in
salts 4 and 5, while possibly merged with the aromatic CN
stretch in solid 3. Thus, in salts, 3−5, there is a possibility of
occurrence of both neutral and ionic species.
(2) (a) Verreck, G.; Decorte, C.; Heymans, K.; Adriaensen, J.; Liu,
D.; Tomasko., D.; Arien, A.; Peeterse, J.; Mooter, V. M. G.; Brewster,
M. E. Int. J. Pharm. 2006, 327, 45−50. (b) Andre, V.; Braga, D.;
Grepioni, F.; Duarte, M. Cryst. Growth Des. 2012, 12, 3082−3090.
(3) (a) Aakeroy, C. B.; Fasulo, M. E.; Desper, D. Mol. Pharmaceutics
2007, 4, 317−322. (b) Morissette, S. L.; Almarsson, O.; Peterson, M.
L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.;
Gardner, C. R. Adv. Drug Delivery Rev. 2004, 56, 275−300. (c) Reddy,
L. S.; Bethune, S. J.; Kampf, J. W.; Rodriguez, H. N. Cryst. Growth Des.
2009, 9, 378−385. (d) He, G.; Chow, P. S.; Tan, R. B. H. Cryst.
Growth Des. 2009, 9, 4529−4532.
(4) (a) Garcia, H. C.; Diniz, R.; Oliveira, L. F. CrystEngComm 2012,
14, 1812−1818. (b) Braga, D.; Grepioni, F.; Andre, V.; Duarte, M. T.
CrystEngComm 2009, 11, 2618−2621.
(5) (a) Garcia, H. C.; Cunha, R. T.; Diniz, R.; Oliveira, L. F. J. Mol.
Struct. 2011, 991, 136−142. (b) Garcia, H. C.; Cunha, R. T.; Diniz, R.;
Oliveira, L. F. J. Mol. Struct. 2012, 1010, 104−110.
CONCLUSION
■
We have shown that PAS-pyridine/bpy system exhibits rich
structural diversity that includes salt, co-crystal, salt co-crystal/
salt co-crystal hydrate and co-crystal polymorphs. Salt-co-crystal
continuum cannot be ruled out in some of these cases. Solid
solution formation between bpe and bpee is also currently being
explored. The study demonstrates the robustness of
COOH···Nheterocycle synthon and the utility of understanding
structural landscape in terms of supramolecular synthon
concept. There is a clear link between molecular and
supramolecular aggregation, and this may correlate with the
composition of the system. A trimer or a dimer connected by
COOH···Nheterocycle synthon is primarily responsible for salt/co-
crystal formation, while the stoichiometry of the resulting solids
is governed by conformational flexibilty and/or supramolecular
aggregation.
(6) (a) Grobelny, P.; Mukherjee, A.; Desiraju, G. R. CrystEngComm
2011, 13, 4358−4364. (b) Desiraju, G. R. Angew. Chem., Int. Ed. 1995,
34, 2311−2327.
(7) Walsh, R. D. B.; Bradner, M. W.; Fleischman, S.; Morales, L. A.;
Moulton, B.; Rodriguez, H. N.; Zaworotko, M. J. Chem. Commun.
2003, 186−187.
(8) Bruker Analytical X-ray Systems, SMART: Bruker Molecular
Analysis Research Tool, Version 5.618; Bruker AXS: Madison, WI,
2000.
(9) Bruker Analytical X-ray Systems, SAINT-NT, Version 6.04,
Bruker AXS: Madison, WI, 2001.
(10) Bruker Analytical X-ray Systems, SHELXTL-NT, Version 6.10;
Bruker AXS: Madison, WI, 2000.
(11) DIAMOND, Version 1.2c; Klaus, B., University of Bonn,
Germany, 1999.
(12) TOPAS V4.2: General Profile and Structure Analysis Software for
Powder Diffraction Data; Bruker AXS GmbH: Karlsruhe, Germany,
2009.
(13) (a) Lynch, D. E.; Chatwin, S.; Parsons, S. Cryst. Eng. 1999, 2,
137−144. (b) Du, M.; Zhang, Z. H.; Guo, W.; Fu, X. J. Cryst. Growth
Des. 2009, 9, 1655−1657. (c) Shattock, T. R.; Arora, K. K.;
Vishweshwar, P.; Zaworotko, M. J. Cryst. Growth Des. 2008, 8,
4533−4545. (d) Men, Y. B.; Sun, J.; Huang, Z. T.; Zheng, Q. Y.
CrystEngComm 2009, 11, 978−979.
(14) (a) Nichol, G. S.; Clegg, W. Cryst. Growth Des. 2009, 9, 1844−
1850. (b) Pedireddi, V. R.; Ranganathan, A.; Chatterjee, S. Tetrahedron
Lett. 1998, 39, 9831−9834. (c) Bowers, J. R.; Hopkins, G. W.; Yap, G.
P. A.; Wheeler, K. A. Cryst. Growth Des. 2005, 5, 727−736. (d) Dickie,
D. A.; Schatte, G.; Jennings, M. C.; Jenkins, H. A.; Khoo, S. Y. L.;
Clyburne, J. A. C. Inorg. Chem. 2006, 45, 1646−1655.
(15) Upreti, S.; Datta, A.; Ramanan, A. Cryst. Growth Des. 2007, 7,
966−971.
ASSOCIATED CONTENT
* Supporting Information
■
S
Crystallographic information files (CIF) for 1−7, ATR-FTIR
spectra (Figure S1) for PAS, and 1−7, DSC scans (Figure S2)
for solids 1−6, Rietveld refinement plots for 1−6 (Figures S3−
S8), and crystal structures for solid 2a (Figure S9) and 6a
(Figure S10). This information is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Fax: +91-11-26581102.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
P.K.G. thanks UGC for a research fellowship and A.R.
acknowledges DST, Government of India, for financial support
and the powder and single crystal X-ray diffraction facility at the
Department of Chemistry, IIT Delhi, India.
REFERENCES
■
(1) (a) Shan, N.; Zaworotko, M. J. Drug Discovery Today 2008, 13,
440−446. (b) Blagden, N.; Matas, M. D.; Gavan, P. T.; York, P. Adv.
G
dx.doi.org/10.1021/cg3015332 | Cryst. Growth Des. XXXX, XXX, XXX−XXX