D. N. Sokolov et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7060–7064
7063
14. Parkes, K. E.; Ermert, P.; Fassler, J.; Ives, J.; Martin, J. A.; Merrett, J. H.; Obrecht,
D.; Williams, G.; Klumpp, K. J. Med. Chem. 2003, 46, 1153.
15. Cianci, C.; Chung, T. D. Y.; Meanwell, N.; Putz, H.; Hagen, M.; Colonno, R. J.;
Krystal, M. Antivir. Chem. Chemother. 1996, 7, 353.
16. Nakazawa, M.; Kadowaki, S.; Watanabe, I.; Kadowaki, Y.; Takei, M.; Fukuda, H.
Antiviral Res. 2008, 78, 194.
17. Plotch, S. J.; O’Hara, B.; Morin, J.; Palant, O.; LaRocque, J.; Bloom, J. D.; Lang, S.
A.; DiGrandi, M. J.; Bradley, M.; Nilakantan, R.; Gluzman, Y. J. Virol. 1999, 73,
140.
antivirals amantadine and rimantadine. As a reference compound,
rimantadine appeared to be inactive against this virus (SI = 5).
Having the activity regarding the influenza strain used, usnic acid
and its derivatives should target a component of the virus other
than M2 protein.
The results of Campanella et al.41 show that the synthesis of
RNA of mouse polyomavirus in 3T6 cells is severely inhibited in
the presence of usnic acid. Virus’ DNA replication was also severely
suppressed at noncytotoxic concentrations of the compound
18. Luo, G.; Torri, A.; Harte, W. E.; Danetz, S.; Cianci, C.; Tiley, L.; Day, S.; Mullaney,
D.; Yu, K. L.; Ouellet, C.; Dextraze, P.; Meanwell, N.; Colonno, R.; Krystal, M. J.
Virol. 1997, 71, 4062.
(5–10 lg/ml, or 15–30 lM). Taken together, the results of the
19. Colacino, J. M.; DeLong, D. C.; Nelson, J. R.; Spitzer, W. A.; Tang, J.; Victor, F.;
Wu, C. Y. Antimicrob. Agents Chemother. 1990, 34, 2156.
20. Hoffmann, H. H.; Kunz, A.; Simon, V. A.; Palese, P.; Shaw, M. L. Proc. Natl. Acad.
Sci. U.S.A. 2011, 108, 5777.
21. Ingolfsdottir, K. Phytochemistry 2002, 61, 729.
22. Perry, N. B.; Benn, M. H.; Brennan, N. J.; Burgess, E. J.; Ellis, G.; Galloway, D. J.;
Lorimer, S. D.; Tangney, R. S. Lichenologist 1999, 31, 627.
23. Scirpa, P.; Scambia, G.; Masciullo, V.; Battaglia, F.; Foti, E.; Lopez, R.; Villa, P.;
Malecore, M.; Mancuso, S. Minerva Ginecol. 1999, 51, 255.
24. Yamamoto, Y.; Miura, Y.; Kimoshita, Y.; Higuchi, M.; Yamada, Y.; Murakami, A.;
Ohigashi, H.; Koshimizu, K. Chem. Pharm. Bull. 1995, 43, 1388.
25. Salakhutdinov, N. F.; Polovinka, M. P.; Panchenko, M.; Yu. Byull. Izobret., 2008,
5, RF Patent No. 2317,076C1.
26. Farina, V.; Reeves, J. T.; Senanayake, C. H.; Song, J. J. Chem. Rev. 2006, 106,
2734.
27. Luzina, O. A.; Polovinka, M. P.; Salakhutdinov, N. F.; Tolstikov, G. A. Russ. J. Org.
Chem. 2009, 45, 1783.
study suggest that the target of the drug is viral RNA production.
This fact could serve as indirect evidence for similar mechanism
of anti-viral activity of usnic acid and its derivatives against influ-
enza virus. If these compounds are able to interact with and inhibit
the polymerase complex of the virus, they can represent a novel
class of low-molecular anti- influenza compounds with novel
mechanism of activity.
On the other hand, some results suggest an anti-inflammatory
activity of usnic acid. Particularly, in LPS-stimulated RAW264.7
macrophages, where it was shown to decrease the TNF-alpha level
(IC50 = 12.8
iNOS protein (IC50 = 4.7
l
M) as well as to attenuate LPS-induced synthesis of
M) and nuclear translocation of
l
28. Sokolov, D. N.; Luzina, O. A.; Polovinka, M. P.; Salakhutdinov, N. F. Chem. Nat.
Comp. 2011, 47, 203.
29. Tazetdinova, A. A.; Luzina, O. A.; Polovinka, M. P.; Salakhutdinov, N. F.;
Tolstikov, G. A. Chem. Nat. Comp. 2010, 45, 800.
NF-kappaB p65. Taken together, these facts suggest that an anti-
inflammatory effect of usnic acid could be explained by inhibiting
TNF-alpha and iNOS expression, possibly through suppression of
nuclear translocation of NF-kB p65 and I-kB
a
degradation.42
30. Experimental: Reactions were monitored by thin layer chromatography (TLC)
on silica gel plates (Sorbfil plates, Imid Ltd.) with products visualization by UV
light. Flash chromatography was performed on silica gel Merck (60–200 mesh)
using distilled chloroform, dichloromethane and ethanole. All compounds
were analyzed for purity by HPLC and characterized by 1H and 13C NMR using
AV-400 spectrometer (Bruker) at operating frequencies of 400.13 MHz (1H)
and 100.61 MHz (13C) for the CDCl3 solutions of the substances. Chemical shifts
are reported in ppm (d) relative to the residual solvent peak in the
corresponding spectra; chloroform 7.24 and d76.90, DMSO d2.6 and d43.5
and coupling constants (J) are reported in hertz (Hz) (where, s = singlet, br
s = broad singlet, d = doublet, dd = double doublet, t = triplet, q = quartet,
m = multiplet). The HPLC analyses were carried out on a Milichrom A-02,
using a ProntoSIL 120-5-C18 AQ column (BISCHOFF, 2.0 ꢂ 75 mm column,
NF-kB is known to play an important stimulatory role in the repro-
duction of the influenza virus in cells and its suppression strongly
decreases the replication activity and infectious titers of the
virus.43 Having NF-kB—suppressing activity, usnic acid may, there-
fore, indirectly reduce virus reproduction by inhibiting cellular
proviral pathways.
Comparing to the results of mentioned studies, the values of
EC50’s obtained in our experiments are for most of active com-
pounds are in the same range or lower. So, they might possess
any mechanism of activity, either direct anti-viral or indirect,
anti-inflammatory, or have another, not yet determined, mecha-
nism of action. Further experiments should be therefore performed
to determine the exact stage of viral life cycle and mode of action
of these substances as well as to optimize their structure to achieve
optimal activity.
grain size 5.0
lm). Mobile phase: Millipore purified water with 0.1%
trifluoroacetic acid at a flow rate of 150
l
L/min at 35 °C and UV detection at
280 nm. A typical run time was 25 min with a linear gradient of 0–100%
methanole. The mass spectra were recorded on a DFS Thermo Scientific high-
resolution mass spectrometer (the energy of ionizing electrons 70 eV). Melting
points were measured on a Kofler heating stage. The IR spectra were recorded
on a Vector 22 spectrometer. Optical rotation parameters were as follows:
polAAr 3005 spectrometer, CHCl3 solution. All of the target compounds
reported in this paper have a purity of P95% (HPLC).
31. General Method for synthesis of compounds 4, 8, 11 and 12: Compound
1(1 mmol) was treated with corresponding aniline (1.1 mmol), dissolved in
ethanol (12 mL), refluxed on a water bath for 3 h, cooled, and treated with
distilled water (10 mL) with formation of white precipitate. The precipitate
was filtered, washed with water and dried in air. The products were separated
by chromatography, and this afforded compounds 4, 8, 11 and 12.
Supplementary data
Supplementary data associated with this article can be found, in
(+)-(R,E)-6-Acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-(20,20,30,30-tetrafluoropro-
pylamino)ethylidene)dibenzo[b,d]furan-1,3-dione (4), yield 92%; mp 155 °C,
½aꢁD +324 (c 0.34, CHCl3). IR spectrum (KBr, t
, cmꢀ1): 1061, 1103, 1288, 1373,
1460, 1560, 1630, 1699, 2989, 3016. 1H NMR (CDCl3) d (ppm): 1.74 (s, 3H,
H15), 2.13 (s, 3H, H10), 2.65 (s, 3H, H14), 2.68 (s, 3H, H12), 3.75 (s, 1H, NH),
4.11 (m, 2H, H10), 5.85 (s, 1H, H4), 5.97 (m,1H, H30), 11.57 (s, 1H, C9-OH), 13.34
(s, 1H, C7-OH). 13C NMR (CDCl3) d (ppm): 7.4 (C10), 17.9 (C12), 31.1 (C15), 31.7
(C14), 41.9 (m, C10), 57.5 (C9b), 101.3 (C4), 102.0 (C6), 103.1 (C9a), 108.1 (C8),
References and notes
1. Ghendon, Y. World Health Statistic 1992, Q 45, 306.
2. Palese, P. Nat. Med. 2004, 10, S82.
3. Rothberg, M. B.; Haessler, S. D. Crit. Care Med. 2010, 38, e91.
4. Ison, M. G. Curr. Opin. Virol. 2011, 1, 563.
5. Scholtissek, C.; Quack, G.; Klenk, H. D.; Webster, R. G. Antiviral Res. 1998, 37, 83.
6. Thorlund, K.; Awad, T.; Boivin, G.; Thabane, L. BMC Infect. Dis. 2011, 11, 134.
7. Hauge, S. H.; Dudman, S.; Borgen, K.; Lackenby, A.; Hungnes, O. Emerg. Infect.
Dis. 2009, 15, 155.
1
1
109.6 (C2), 115.2 (C30, tt, JC-F = 240), 110.2 (C20, tt, JC-F = 250), 155.6 (C5a),
157.9 (C9), 163.4 (C7), 174.5 (C4a), 176.5 (C11), 190.9 (C3), 198.7 (C1), 200.6
(C13). HRMS: M+ 457 (C21H19O6N1F4); obsd: m/z 457.1141; calcd: 457.1143.
(-)-4, ½aꢁD26ꢀ320 (c 0.3; CHCl3);
(+)-(R,E)-6-Acetyl-2-(1-(4-fluorophenylamino)ethylidene)-7,9-dihydroxy-8,9b-
dimethyldibenzo[b,d]furan-1,3(2H,9bH)-dione (8), light yellow solid, 70%
8. Hayden, F. G.; Sable, C. A.; Connor, J. D.; Lane, J. Antivir. Ther. 1996, 1, 51.
9. Beigel, J.; Bray, M. Antiviral Res. 2008, 78, 91.
yield; mp 72–74 °C; ½a D31
ꢁ
+257 (c 0.2; CHCl3); IR (KBr) 1061, 1133, 1200,
10. Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D. F.; Barnard, D. L.;
Gowen, B. B.; Julander, J. G.; Morrey, J. D. Antiviral Res. 2009, 82, 95.
11. Tomassini, J. E.; Davies, M. E.; Hastings, J. C.; Lingham, R.; Mojena, M.;
Raghoobar, S. L.; Singh, S. B.; Tkacz, J. S.; Goetz, M. A. Antimicrob. Agents
Chemother. 1996, 40, 1189.
12. Tomassini, J.; Selnick, H.; Davies, M. E.; Armstrong, M. E.; Baldwin, J.; Bourgeois,
M.; Hastings, J.; Hazuda, D.; Lewis, J.; McClements, W. Antimicrob. Agents
Chemother. 1994, 38, 2827.
1286, 1365, 1452, 1546, 1628, 1699, 2921, 3434; 1H NMR (CDCl3) d (ppm): 1.72
(s, 3H, H15), 2.06 (s, 3H, H10), 2.54 (s, 3H, H12), 2.65 (s, 3H, H14), 5.84 (s, H4),
7.15–7.17 (m, 4H, H2 and H60, H30027 and H50), 11.75 (s, C9-OH), 13.34 (s, C7-
OH), 15.00 (s, NH); 13C NMR (CDCl3) d (ppm): 7.4 (C10), 20.4 (C12), 31.2 (C14),
31.8 (C15), 57.5(C9b), 101.3, 102.7, 104.8 (C6, C9a, C2), 102.1 (C4), 108.1 (C8),
116.7 (d, 2JC-F = 23 Hz, C30 and C50), 127.5 (d, 3JC-F = 8 Hz, C20 and C60), 161.9 (d,
1JC-F = 248 Hz, C40), 132.1 (d, JC-F = 3 Hz, C10), 155.7 (C5a), 158.1 (C9), 163.5
4
(C7), 174.2 (C11), 174.8 (C4a), 191.0 (C3), 198.8 (C1), 200.6 (C13); HRMS: M+
437 (C24H20O6NF); obsd: 437.1263; calcd: 437.1269.
13. Hastings, J. C.; Selnick, H.; Wolanski, B.; Tomassini, J. E. Antimicrob. Agents
Chemother. 1996, 40, 1304.
(ꢀ)-8, ½a 3D1
ꢀ253 (c 0.2; CHCl3).
ꢁ