Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
the -2-deoxygalactosides 12 products exclusively. Interestingly,
heating a mixture of methanol and catalyst 1c overnight did not
affect the outcome of the reaction or yield following the addition of
galactal 2 in the next day, indicating that 1c retains its catalytic
properties and does not lose its acidic character.
Chem. Sci., 2019, 10, 508−514; (h) G. Y.DZOhIa: o10, .T10. 3W9/aCn9gC,CA0n6g1e51wG.
Chem. Int. Ed., 2018, 57, 6120−6124; (i) S. Medina, M. J. Harper,
E. I. Balmond, S. Miranda, G. E. M. Crisenza, D. M. Coe, E. M.
McGarrigle, M. C. Galan, Org. Lett., 2016, 18, 4222−4225; (j) E. I.
Balmond, D. Benito-Alifonso, D. M. Coe, R. W. Alder, E. M.
McGarrigle, M. C. Galan, Angew. Chem. Int. Ed., 2014, 53,
8190−8194; (k) E. I. Balmond, D. M. Coe, M. C. Galan, E. M.
McGarrigle, Angew. Chem. Int. Ed., 2012, 51, 9152−9155; (l) J.
Wang, C. Deng, Q. Zhang, Y. Chai, Org. Lett., 2019, 21,
1103−1107; (m) Y.-J. Lu, Y.-H. Lai, Y.-Y. Lin, Y.-C. Wang, P.-H.
(a) C. Palo-Nieto, A. Sau, M. C. Galan, J. Am. Chem. Soc., 2017,
139, 14041−14044; (b) A. Sau, R. Williams, C. P. Nieto, A.
Franconetti, S. Medina, M. C. Galan, Angew. Chem. Int. Ed.,
2017, 56, 3640 –3644; (c) C. H. Marzabadi, R. W. Franck,
Tetrahedron, 2000, 56, 8385−8417; (d) R. S. Thombal, V. H.
Jadhav, RSC Adv., 2016, 6, 30846; (e) A. Sau, R. Williams, C. Palo-
Nieto, A. Franconetti, S. Medina, M. C. Galan, Angew. Chem. Int.
Ed., 2017, 56, 3640−3644; (f) A. Sau, M. C. Galan, Org. Lett.,
2017, 19, 2857−2860.
OAc
OAc
H
O
O
OCD3
1c
CD3OD,
(20 mol %)
1
2
H
H
MeNO2, 60 oC, 6 h
AcO
AcO
OAc
OAc
12
, 85%
2
D+
OAc
+
OAc
H
H+
3
AcO
O
O
OAc
AcO
O
H+
OAc
CD3
D
I
II
OH
OH
OH
OH
B
OH
+
+
R
R
B
+
+
2 H2O
H3O
R
R
eq. 1.1
eq. 1.2
R-OH
OH
H
H
OH
B
OH
+
B
OR
+
R O
2 R-OH
OH
4
5
J. S. Yadav, B. V. S. Reddy, K. B. Reddy, M. Satyanarayana,
Tetrahedron Lett., 2002, 43, 7009–7012.
Fig. 1 Plausible mechanism of glycosylation of D-galactal 2
(a) V. Bolitt, C. Mioskowski, S. G. Lee, J. R. Falk, J. Org. Chem.,
1990, 55, 5812–5813; (b) M.-Y. Hsu, Y.-P. Liu, S. Lam, S.-C. Lin,
C.-C. Wang, Beilstein J. Org. Chem., 2016, 12, 1758–1764.
(a) E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle,
Angew. Chem. Int. Ed., 2012, 51, 9152; (b) B. D. Sherry, R. N.
Loy, F. D. Toste, J. Am. Chem. Soc., 2004, 126, 4510; (c) H. Kunz,
C. Unverzagt, Angew. Chem., Int. Ed. Engl., 1988, 27, 1697.
J. Zhao, S. Wei, X. Ma, H. Shao, Carbohydra. Res., 2010, 345,
168–171.
J. A. McCubbin, H. Hosseini, O. V. Krokhin, J. Org. Chem., 2010,
75, 959.
I. Georgiou, G. Ilyashenko, A. Whiting, Acc. Chem. Res., 2009, 42,
756.
Conclusion
6
We developed
a mild and metal-free direct stereoselective
glycosylation method for deactivated peracetylated D-galactal using
commercially available perfluorophenylboronic acid 1c catalyst. The
glycosylation method gave 2-deoxygalactosides in good to excellent
yields with complete -selectivity and tolerated a wide substrate
scope and a range of functional groups. The unprecedented results
enabled glycosylation of the challenging peracetylated galactal.
Application of this chemistry to the synthesis of other 2-
deoxyglycosides is currently underway in our laboratory.
7
8
9
10 (a) X.-D. Hu, C.-A. Fan, F.-M. Zhang, Y.-Q. Tu, Angew. Chem. Int.
Ed., 2004, 43, 1702; (b) H. Zheng, S. Ghanbari, S. Nakamura, D.
G. Hall, Angew. Chem. Int. Ed., 2012, 51, 6187.
Conflicts of interest
11 (a) D. Lloyd, C. S. Bennett, Synthesis. Chem. Eur. J., 2018, 24,
7610−7614; (b) M. Tanaka, J. Nashida, D. Takahashi, K. Toshima,
Org. Lett., 2016, 18, 2288−2291; (c) K. A. D. Angelo, M. S. Taylor,
J. Am. Chem. Soc., 2016, 138, 11058−11066; (d) R. S. Mancini, J.
B. Lee, M. S. Taylor, J. Org. Chem., 2017, 82, 8777−8791; (e) R. S.
Mancini, C. A. McClary, S. Anthonipillai, M. S. Taylor, J. Org.
Chem., 2015, 80, 8501−8510; (f) S. Manhas, M. S. Taylor,
Carbohydra. Res., 2018, 470, 42–49.
12 (a) A. Debache, B. Boumoud, M. Amimour, A. Belfaitah, S.
Rhouati, B. Carboni, Tetrahedron Lett., 2006, 47, 5697; (b) H.
Zheng, D. G. Hall, Tetrahedron Lett., 2010, 51, 3561.
13 M. B. Tatina, X. Mengxin, R. Peilin, Z. M. A. Judeh, Beilstein J.
Org. Chem., 2019, 15, 1275–1280.
14 M. B. Tatina, D. T. Khong, Z. M. A. Judeh, Eur. J. Org. Chem.
2018, 2208–2213.
15 D. Zarzeczańska, A. Adamczyk-Woźniak, A. Kulpa, T. Ossowski,
A. Sporzyński, Eur. J. Inorg. Chem. 2017, 4493–4498.
16 T. Matsumoto, T. Hosoya, K. Suzuki, Tetrahedron Lett. 1990, 31,
4629-4632.
There are no conflicts to declare.
Acknowledgments
We thank Nanyang Technological University, Singapore (Grant # RG
13/18) and United Arab Emirates University (Grant # 852) for
financial support.
Notes and references
1
(a) T. K. Lindhorst in Glycoscience: Chemistry and Chemical
Biology, 2nd ed. (Eds.: B. O. Fraser-Reid, K. Tatsuta, J. Thiem, G.
L. Cot́, S. Flitsch, Y. Ito, H. Kondo, S.-i. Nishimura, B. Yu, Springer,
Berlin, 2008, chap. 12.6; (b) X. M. He, H.W. Liu, Curr. Opin.
Chem. Biol., 2002, 6, 590-597.
2
(a) D. Benito-Alifonso, M. C. Galan, Bronsted and Lewis Acid
Catalyzed Glycosylation. In Selective Glycosylations: Synthetic
Methods and Catalysis; Bennett, C. E., Ed.; 2017; pp 155−171;
(b) M. J. McKay, H. M. Nguyen, ACS Catal., 2012, 2, 1563−1595;
(c) E. I. Balmond, M. C. Galan, E. M. McGarrigle, Synlett, 2013,
24, 2335−2339; (d) C. S. Bennett, M. C. Galan, Chem. Rev., 2018,
118, 7931−7985; (e) S. Medina, M. C. Galan, Carbohydr. Chem.,
2015, 41, 59−89; (f) A. Sau, C. Palo-Nieto, M. C. Galan, J. Org.
Chem., 2019, 84, 2415−2424; (g) G. A. Bradshaw, A.C. Colgan, N.
17 H. M. Christensen, S. Oscarson, H. H. Jensen, Carbohydra. Res.
2015, 408, 51-95.
18 J. P. Lorand, J. O. Edwards, J. Org. Chem. 1959, 24, 769-774.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins