Green Chemistry
Paper
33 Y. Li, I. Sorribes, T. Yan, K. Junge and M. Beller, Angew. 59 P. Bazinet, T.-G. Ong, J. S. O’Brien, N. Lavoie, E. Bell,
Chem., Int. Ed., 2013, 52, 12156–12160.
G. P. A. Yap, I. Korobkov and D. S. Richeson,
Organometallics, 2007, 26, 2885–2895.
60 A. F. Pozharskii and V. V. Dal’nikovskaya, Usp. Khim., 1981,
50, 1559–1560.
61 For a regular pentagon and hexagon, the corresponding
angles α are 72 and 60, respectively.
62 V. M. Ho, L. A. Watson, J. C. Huffman and K. G. Caulton,
New J. Chem., 2003, 27, 1446–1450.
34 K. Beydoun, G. Ghattas, K. Thenert, J. Klankermayer and
W. Leitner, Angew. Chem., Int. Ed., 2014, 53, 11010–11014.
35 K. Beydoun, T. vom Stein, J. Klankermayer and W. Leitner,
Angew. Chem., Int. Ed., 2013, 52, 9554–9557.
36 L. Zhang, Z. Han, X. Zhao, Z. Wang and K. Ding, Angew.
Chem., Int. Ed., 2015, 54, 6186–6189.
37 K. Beydoun, K. Thenert, E. S. Streng, S. Brosinski,
W. Leitner and J. Klankermayer, ChemCatChem, 2016, 8, 63 A. Prades, M. Poyatos, J. A. Mata and E. Peris, Angew.
135–138. Chem., Int. Ed., 2011, 50, 7666–7669.
38 Z. Yang, B. Yu, H. Zhang, Y. Zhao, Y. Chen, Z. Ma, G. Ji, 64 H. Valdes, M. Poyatos and E. Peris, Organometallics, 2013,
X. Gao, B. Han and Z. Liu, ACS Catal., 2016, 6, 1268–
1273.
39 T. V. Q. Nguyen, W.-J. Yoo and S. Kobayashi, Adv. Synth.
Catal., 2016, 358, 452–458.
32, 6445–6451.
65 For a review of these methods see: E. Peris, Top. Organomet.
Chem., 2007, 21, 83.
66 H. Werner, Angew. Chem., Int. Ed., 2010, 49, 4714–4728.
40 T. V. Q. Nguyen, W.-J. Yoo and S. Kobayashi, Angew. Chem., 67 K. Q. Vuong, M. G. Timerbulatova, M. B. Peterson,
Int. Ed., 2015, 54, 9209–9212.
41 X. Frogneux, O. Jacquet and T. Cantat, Catal. Sci. Technol.,
2014, 4, 1529–1533.
42 P. Daw, S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-
David and D. Milstein, ACS Catal., 2017, 7, 2500–2504.
M. Bhadbhade and B. A. Messerle, Dalton Trans., 2013, 42,
14298–14308.
68 R. H. Lam, D. B. Walker, M. H. Tucker, M. R. D. Gatus,
M. Bhadbhade and B. A. Messerle, Organometallics, 2015,
34, 4312–4317.
43 O. Santoro, F. Lazreg, Y. Minenkov, L. Cavallo and 69 L. D. Field, B. A. Messerle, M. Rehr, L. P. Soler and
C. S. J. Cazin, Dalton Trans., 2015, 44, 18138–18144. T. W. Hambley, Organometallics, 2003, 22, 2387.
44 H. Liu, Q. Mei, Q. Xu, J. Song, H. Liu and B. Han, Green 70 S. Burling, L. D. Field, B. A. Messerle and P. Turner,
Chem., 2017, 19, 196–201. Organometallics, 2004, 23, 1714–1721.
45 S. Zhang, Q. Mei, H. Liu, H. Liu, Z. Zhang and B. Han, RSC 71 L. P. Soler, PhD thesis, University of Sydney, 1999.
Adv., 2016, 6, 32370–32373.
72 X.-D. Li, S.-M. Xia, K.-H. Chen, X.-F. Liu, H.-R. Li and
46 K. Motokura, N. Takahashi, D. Kashiwame, S. Yamaguchi,
L.-N. He, Green Chem., 2018, 20, 4853–4868.
A. Miyaji and T. Baba, Catal. Sci. Technol., 2013, 3, 2392– 73 J. Y. Zeng, M.-H. Hsieh and H. M. Lee, J. Organomet. Chem.,
2396. 2005, 690, 5662–5671.
47 L. Gonzalez-Sebastian, M. Flores-Alamo and J. J. Garcia, 74 M. Doux, N. Mezailles, L. Ricard and P. Le Floch,
Organometallics, 2015, 34, 763–769. Organometallics, 2003, 22, 4624–4626.
48 Z.-Z. Yang, B. Yu, H. Zhang, Y. Zhao, G. Ji and Z. Liu, RSC 75 A. F. Hill, A. J. P. White, D. J. Williams and
Adv., 2015, 5, 19613–19619.
49 I. Özdemir, B. Alici, N. Gurbuz, E. Cetinkaya and
B. Cetinkaya, J. Mol. Catal. A: Chem., 2004, 217, 37–40.
J. D. E. T. Wilton-Ely, Organometallics, 1998, 17, 3152–
3154.
76 K. K. Pandey, Coord. Chem. Rev., 1995, 140, 37–114.
50 W. A. Herrmann, J. Schuetz, G. D. Frey and E. Herdtweck, 77 C. Bianchini, D. Masi, C. Mealli, A. Meli and M. Sabat,
Organometallics, 2006, 25, 2437–2448. Organometallics, 1985, 4, 1014–1019.
51 T. Tu, J. Malineni, X. Bao and K. H. Dötz, Adv. Synth. Catal., 78 E. Lindner, B. Keppeler, H. A. Mayer, K. Gierling, R. Fawzi
2009, 351, 1029–1034.
and M. Steinmann, J. Organomet. Chem., 1996, 526, 175–
52 H. Tsurugi, S. Fujita, G. Choi, T. Yamagata, S. Ito,
183.
H. Miyasaka and K. Mashima, Organometallics, 2010, 29, 79 Though by no means definitive, in many cases decolouriza-
4120–4129.
tion of d6 or d8 complexes often accompanies an increase
in coordinative saturation.
53 G. Choi, H. Tsurugi and K. Mashima, J. Am. Chem. Soc.,
2013, 135, 13149–13161.
54 A. F. Hill and C. M. A. McQueen, Organometallics, 2012, 31,
8051–8054.
55 A. F. Hill and C. M. A. McQueen, Organometallics, 2014, 33,
1909–1912.
56 K. Verlinden and C. Ganter, J. Organomet. Chem., 2014,
750, 23–29.
80 (16) Decomposition was suggested by peaks in the NMR
spectra that matched those observed when 2b was exposed
to air, despite all manipulations being carried out under
nitrogen using standard Schlenk techniques. This
decomposition product could not be well characterised,
despite several attempts, but gave a distinctive 31P NMR
doublet resonance at P = 30 (1JRh–P = 102 Hz) and most
57 W. P. Fehlhammer and W. Finck, J. Organomet. Chem.,
1991, 414, 261–270.
likely corresponds to
{C(NCH2PCy2)2C10H6}].
a dioxygen adduct [RhCl(2-O2)
58 P. Bazinet, G. P. A. Yap and D. S. Richeson, J. Am. Chem. 81 W. Sattler and G. Parkin, J. Am. Chem. Soc., 2012, 134,
Soc., 2003, 125, 13314–13315.
17462–17465.
This journal is © The Royal Society of Chemistry 2018
Green Chem.