ChemComm
Communication
5 C. Walsh, Nature, 2000, 406, 775–781.
6 K. Gademann, Chimia, 2007, 61, 373–377.
7 J.-Y. Wach, B. Malisova, S. Bonazzi, S. Tosatti, M. Textor, S. Zu¨rcher
and K. Gademann, Chem.–Eur. J., 2008, 14, 10579–10584.
8 J.-Y. Wach, S. Bonazzi and K. Gademann, Angew. Chem., Int. Ed.,
2008, 47, 7123–7126.
9 X. Khoo, P. Hamilton, G. A. O’Toole, B. D. Snyder, D. J. Kenan and
M. W. Grinstaff, J. Am. Chem. Soc., 2009, 131, 10992–10997.
10 K. Vasilev, S. S. Griesser and H. J. Griesser, Plasma Processes Polym.,
2011, 8, 1010–1023.
11 (a) C. Fuqua, S. C. Winans and E. P. Greenberg, Annu. Rev. Microbiol.,
1996, 50, 727–751; (b) R. Mittal, S. Sharma, S. Chhibber, S. Aggarwal,
V. Gupta and K. Harjai, FEMS Immunol. Med. Microbiol., 2010, 58,
237–243.
12 M. Juhas, L. Eberl and B. Tummler, Environ. Microbiol., 2005, 7, 459–471.
13 (a) B. L. Bassler, Cell, 2002, 109, 421; (b) B. L. Bassler and R. Losick,
Cell, 2006, 125, 237–246.
Fig. 4 Comparison of activity of dialyzed Ti-2 (0.6 mg mLÀ1) and dialyzed C8-AHL
(0.3 lM). Data are reported as mean Æ SEM, N = 9.
14 S. P. Diggle, S. A. Crusz and M. Camara, Curr. Biol., 2009, 17, R907–R910.
15 C. M. Waters and B. L. Bassler, Annu. Rev. Cell Dev. Biol., 2005, 21,
319–346.
after different incubation times and the activity of functionalized
beads Ti-2 was compared to the natural agonist, both positioned
inside the dialysis tubes. The results (Fig. 4) demonstrate that
the positive control using dialyzed compound C8-AHL reaches its
maximum activity after a short period of time as expected. The
activity decreased after overnight incubation, which can be explained
by the fact that the lactone in AHL is known to be hydrolyzed non-
enzymatically under physiological conditions.32 The functionalized
beads Ti-2 release the hybrids much slower and an increase of
activity is observed even after overnight incubation. The release
appears to be linear over the measured experiment time. However,
the mechanism of release and relative rates for the hydrolysis
of compounds in solution vs. on the surface remain unknown.
Quantitative measurements were performed showing hybrid con-
centrations increasing from 4 to 270 nM after 1 hour and 16 hours
incubation time, respectively.
´
16 M. Boyer and F. Wisniewski-Dye, FEMS Microbiol. Ecol., 2009, 70, 1–19.
17 W. R. J. D. Galloway, J. T. Hodgkinson, S. D. Bowden, M. Welch and
D. R. Spring, Chem. Rev., 2011, 111, 28–67.
18 N. A. Whitehead, A. M. Barnard, H. Slater, N. J. Simpson and
G. P. Salmond, FEMS Microbiol. Rev., 2001, 25, 365–404.
19 Y. Deng, J. Wu, F. Tao and L.-H. Zhang, Chem. Rev., 2011, 111, 160–173.
20 (a) M. Givskov, R. de Nys, M. Manefield, L. Gram, R. Maximilien,
L. Eberl, S. Molin, P. D. Steinberg and S. Kjelleberg, J. Bacteriol.,
1996, 178, 6618–6622; (b) M. Hentzer, H. Wu, J. B. Andersen,
K. Riedel, T. B. Rasmussen, N. Bagge, N. Kumar, M. A. Schembri,
Z. Song, P. Kristoffersen, M. Manefield, J. W. Costerton, S. Molin,
L. Eberl, P. Steinberg, S. Kjelleberg, N. Høiby and M. Givskov, EMBO
J., 2003, 22, 3803–3815; (c) N. Ni, M. Li, J. Wang and B. Wang, Med.
Res. Rev., 2009, 29, 65–124.
21 Y. H. Dong, L. H. Wang, J. L. Xu, H. B. Zhang, X. F. Zhang and
L. H. Zhang, Nature, 2001, 411, 813–817.
22 Y.-H. Dong, L.-H. Wang and L.-H. Zhang, Philos. Trans. R. Soc., B,
2007, 362, 1201–1211.
23 M. Hentzer, K. Riedel, T. B. Rasmussen, A. Heydorn, J. B. Andersen,
M. R. Parsek, S. A. Rice, L. Eberl, S. Molin, N. Høiby, S. Kjelleberg
and M. Givskov, Microbiology, 2002, 148, 87–102.
24 C. A. Lowery, N. T. Salzameda, D. Sawada, G. F. Kaufmann and
K. D. Janda, J. Med. Chem., 2010, 53, 7467–7489.
In conclusion, we report the preparation of hybrid compound 2
combining a nitrodopamine anchor and an acylated homoserine
lactone as the bioactive moiety tethered via
a C12 linker.
25 (a) L. Yang, Y. Liu, H. Wu, Z. Song, N. Høiby, S. Molin and
M. Givskov, FEMS Immunol. Med. Microbiol., 2012, 65, 146–157;
(b) M. Hentzer, L. Eberl, J. Nielsen and M. Givskov, BioDrugs,
2003, 17, 241–250; (c) A. Camilli and B. L. Bassler, Science, 2006,
311, 1113–1116.
26 N. Amara, R. Mashiach, D. Amar, P. Krief, A. H. Spieser,
M. J. Aharoni, A. Bottomley and M. M. Meijler, J. Am. Chem. Soc.,
2009, 131, 10610–10619.
27 R. Kuehl, S. Al-Bataineh, O. Gordon, R. Luginbuehl, M. Otto,
M. Textor and R. Landmann, Antimicrob. Agents Chemother., 2009,
53, 4159–4162.
28 A. S. Breitbach, A. H. Broderick, C. M. Jewell, S. Gunasekaran, Q. Lin,
D. M. Lynn and H. E. Blackwell, Chem. Commun., 2011, 47, 370–372.
29 (a) P. B. Messersmith, Science, 2008, 319, 1767–1768; (b) S. Zu¨rcher,
These hybrids are recognized by the AHL biosensor P. putida F117
(pAS-C8). Functionalized TiO2 beads Ti-2 were obtained by an
operationally simple dip-and-rinse procedure and the resulting
beads Ti-2 are capable of inducing QS. The activity of the Ti-2 beads
was retained even after extensive washing with water. The bacteria
do not accumulate on the beads and the hybrids are slowly released
as suggested by dialysis assays. This hybrid system expands the
catechol surface modification platform7,9,29,33 and this approach
might provide a straightforward method for the preparation of
coated surfaces in medical devices able to interrupt the QS signalling
pathway in a wide range of different bacterial strains. Such surfaces
could find an application in various bacteria related to medicine
(e.g., implants), agriculture, and material sciences.
¨
D. Wackerlin, Y. Bethuel, B. Malisova, M. Textor, S. Tosatti and
K. Gademann, J. Am. Chem. Soc., 2006, 128, 1064–1065; (c) B. Malisova,
S. Tosatti, M. Textor, K. Gademann and S. Zu¨rcher, Langmuir, 2010
26, 4018–4026; (d) R. Wehlauch, J. Hoecker and K. Gademann,
ChemPlusChem, 2012, DOI: 10.1002/cplu.201200251.
We thank the Swiss National Science Foundation (200021-
144028, PE0022-117136, 31003A-122013 and 143773) for financial
support. Part of this work is supported by the NCCR ‘Chemical
Biology’.
30 K. H. McClean, M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra,
M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. A.
B. Steward and P. Williams, Microbiology, 1997, 143, 3703–3711.
31 A. Steidle, K. Sigl, R. Schuhegger, A. Ihring, M. Schmid, S. Gantner,
M. Stoffels, K. Riedel, M. Givskov, A. Hartmann, C. Langebartels and
L. Eberl, Appl. Environ. Microbiol., 2001, 67, 5761–5770.
32 (a) F. G. Glansdorp, G. L. Thomas, J. K. Lee, J. M. Dutton, G. P. C.
Salmond, M. Welch and D. R. Spring, Org. Biomol. Chem., 2004, 2,
3329–3336; (b) J. T. Byers, C. Lucas, G. P. C. Salmond and M. Welch,
J. Bacteriol., 2002, 184, 1163–1171.
Notes and references
1 T.-F. C. Mah and G. A. O’Toole, Trends Microbiol., 2001, 9, 34–39.
2 A. J. J. Wood, H. S. Gold and R. C. Moellering, N. Engl. J. Med., 1996,
335, 1445–1453.
3 J. P. Burke, N. Engl. J. Med., 2003, 348, 651–656.
4 J. W. Costerton, P. S. Stewart and E. P. Greenberg, Science, 1999, 284,
1318–1322.
33 Review: Q. Ye, F. Zhou and W. Liu, Chem. Soc. Rev., 2011, 40,
4244–4258.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 155--157 157