Page 3 of 3
ChemComm
γ:α [a]
100:0
100:0
100:0
100:0
100:0
100:0
Entry
R
Isolated Yield (%) [c]
ee (%) [b]
30 centers. The reaction can be directly performed on the
substrate containing the fluoroalkyl moiety. The results
obtained are excellent on a wide range of substrates and
nucleophiles (15 examples, up to 95 % ee, up to 80 % yield,
100:0 γ:α in all cases). Finally the reaction can be scaled up
35 with no erosion of the enantioselectivity or regioselectivity
and importantly with improved yield.
1
2
3
4
5
6
pꢀClC6H4
mꢀMeC6H4
mꢀOMeC6H4
Cy
c-Pent
Ph(CH2)2
42
60
53
60
42
57
94
95
67
87
90
18
[a] By 1Hꢀ(NMR). [b] By chiral GC. [c] Yield after purification on silica gel
column chromatography.
Notes and references
a Department of Organic Chemistry, University of Geneva, Quai Ernest
Ansermet, 30, 1211, Geneva 4, Switzerland; E-mail:
40 alexandre.alexakis@unige.ch; Tel: 0041 (0)22 379 65 22
† Electronic Supplementary Information (ESI) available: Full
experimental details. See DOI: 10.1039/b000000x/
5
Finally we also extended our methodology to the construction
of quaternary centers bearing CF3 and CF2H groups. By
employing the copper free conditions we could obtain the
desirable adduct in high yield (80 %) with a perfect level of
regioselectivity, combined with a good level of enantioselecti
1
(a) J. P. Bégué, D. BonnetꢀDelpon, Bioorganic and Medicinal
Chemistry of Fluorine; Wiley:Hoboken, NJ, 2008; (b) W. K.
Hagmann, J. Med. Chem. 2008, 51, 4359; J. R. McCarthy, Fluorine
in Drug design: A Tutorial Review; 17th Winter Fluorine Conference
(St Petersburg,FL), Jan 9ꢀ14, 2005.
10 vity (79 % ee) when a CF3 group is present. Similarly on a
substrate bearing a CF2H group the copper free system
afforded better results than the copper catalyzed system in
both regioselectivity and enantioselectivity. Again the
phosphoramidite type ligand L9, in combination with copper,
15 afforded miserable results.
2 (a) A. M. Thayer, Chem. Eng. News. 2006, 84, 15; (b) P. Kirsch
Modern, Fluoroorganic Chemistry: Synthesis, Reactivity,
Applications, WileyꢀVCH, Weinheim, 2004; (c) Organofluorine
Compounds: Chemistry and Applications (Ed: T. Hiyama), Springer,
New York, 2000; (d) K. Uneyama, Organofluorine Chemistry,
Blackwell, New Dehli, 2006; (e) R. D. Chambers, Fluorine in
Organic Chemistry, Blackwell, Oxford, 2004; (f) Organofluorine
Compounds in Medicinal Chemistry and Biomedical Applications
(Eds: R. Filler, Y. Kobayashi, L. M. Yagupolskii), Elsevier, 1993; (g)
Biomedical Fontiers of Fluorine Chemistry ed. I. Ojima, J.R
McCarthy and J. T. Welch, Washington DC, 1996.
Et
CF2H
no reaction
1.8 eq EtMgBr
2.5 mol % CuTC
3 mol % L9, CH2Cl2
-78°C, 2 h
3 (a) B. J. Mann, Chem. Soc. Rev. 1987, 16, 381; (b) G. K. S Prakash, A.
K. Yudin, Chem. Rev. 1997, 97, 757; (c) B. R. Langlois, T. Billard,
Synthesis. 2003, 02, 185; (d) J. A. Ma, D. Cahard, Chem. Rev. 2004,
104, 6119; (e) G. K. S Prakash, J. Hu, Acc. Chem. Res. 2007, 40, 921;
(f) V. A. Brunet, D. O'Hagan, Angew. Chem. Int. Ed. 2008, 47, 1179;
(g) D. Cahard, X. Xu, S.CouveꢀBonnaire, X. Pannecoucke, Chem.
Soc. Rev, 2010, 39, 558; Chem. Rev, 2008 , 108, 1.
1.8 eq EtMgBr
2.5 mol % CuTC
L5
1.8 eq EtMgBr
L5
Et
CF2H
Et
CF2H
CF2H
3 mol %
3 mol %
Br
Et2O, -15°C, 2 h
Et2O, -78°C, 15 h
70:30 SN2'/SN
2
60 % yield
100:0 SN2'/SN
95 % ee
90 % ee
2
4 (a) H. Ibrahim, A. Togni, Chem. Commun 2004, 10, 1147; (b) P. M
Pihko, Angew. Chem. Int. Ed. 2006, 45, 544; (c) G. K. S. Prakash, P.
Beier, Angew. Chem. Int. Ed. 2006, 45, 2172; (d) C. Bobbio, V.
Gouverneur, Org. Biomol. Chem. 2006, 4, 2065; (e) T. Fukuzumi, N.
Shibata, M. Sugiura, H. Yasui, S. Nakamura, T. Toru, Angew. Chem.
Int. Ed. 2006, 45, 5095; (f) Y. Li, J. Hu, Angew. Chem. Int. Ed. 2005,
44, 6032; Angew. Chem. Int. Ed. 2005, 44, 5882; (g) Y. Li, C. Ni, J.
Liu, L. Zhang, J. Zheng, L. Zhu, J. Hu, Org. Lett. 2006, 8, 1693; (h)
G. K. S. Prakash, M. Mandal, G. A. Olah, Angew. Chem. Int. Ed.
2001, 40, 609.
1.8 eq Ph(CH2)2MgBr
2.5 mol % CuTC
3 mol % L4
1.8 eq
Ph(CH2)2MgBr
3 mol % L4
CF3
CF3
CF3
Ph
Ph
Messy reaction
Br
Et2O, -15°C, 15 h
Et2O, -15°C, 15 h
80 % yield
1.8 eq Ph(CH2)2MgBr
2.5 mol % CuTC
3 mol % L9,CH2Cl2
-78°C, 15 h
100:0 SN2'/SN
79 % ee
2
CF3
5 (a) T. Takehane, M. Mishina, T. Ishihara, T. Konno, J. Org. Chem.
2006, 71, 3545; (b) M. Kimusa, T. Yamasaki, T. Kituzane, T.
Kubota, Org. Lett. 2004, 25, 4651.
6 (a) G. W. Gribble, J. Chem. Educ. 1973, 50, 460; (b) R. Peters, R. W.
Wakelin, Proc. R. Soc. London Ser. B. 1953; (c) E. Kun, R. J.
Dummel, Methods Enzymol. 1969, 13, 623.
Ph
100 % conv
48:52 SN2'/SN
20 % ee
2
Scheme 3 Extension of the Cuꢀfree methodology in the construction
of CF3 and CF2H quaternary centers.
7 (a) D. O'Hagan, H.S. Rzepa, Chem. Commun. 1997, 7, 645; (b) R. H.
Abeles, A. L. Maycock, Acc. Chem. Res. 1976, 9, 313; (c) R. B.
Silverman, S. M. Nanavati, J. Med. Chem. 1990, 33, 931.
8 (a )T. Fukuzumi, N. Shibata, M. Sugiura, H. Yasui, S. Nakamura, T.
Toru, Angew.Chem. Int. Ed. 2006, 45, 4973; (b) W. B. Liu, S. C.
Zheng, H. He, X. M. Zhao, Chem. Commun 2009, 43, 6604.
To conclude, we have reported herein the first catalytic
20 Asymmetric Allylic Alkylation (AAA) protocol which allows
the construction of quaternary stereocenters bearing
a
monofluoromethyl, difluoromethyl and trifluoromethyl
groups. By using a readily available NHC bidendate ligand (3
steps synthesis) and a readily available organometallic source
25 we managed to obtain highly enantioenriched adducts which
contain two important patterns (presence of a quaternary
center flanked by a CH2F, CF2H or a CF3 group). This method
is complementary to the iridium and palladium catalyzed
AAA which led to the construction of less challenging tertiary
9 (a) G. K. S. Prakash, S. Chacko, S. Alconcel, T. Stewart, T. Mathew, G.
A. Olah, Angew. Chem. Int. Ed. 2007, 46, 5021; Angew. Chem. Int.
Ed. 2007, 46, 4933; (b) S. Mizuta, N. Shibata, Y. Goto, T. Furakawa,
S. Nakamura, T. Toru, J. Am. Chem. Soc. 2007, 129, 6394.
10 (a) O. Jackowski, A.Alexakis, Angew. Chem. Int. Ed. 2010, 49, 3346;
(b) D. Grassi, A. Alexakis, Org. Lett. 2012, 14, 1568; See also (c) Y.
Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2006, 128, 15604 ;
11 H. Li, A. Alexakis, Angew. Chem. Int. Ed. 2012, 51, 1055
12 K. TissotꢀCroset, A. Alexakis, Tetrahedron Lett. 2004, 45, 7375.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3