ChemComm
Communication
for use of GPC instrumentation and Parisa Mehrkhodavandi for
helpful discussion. This research was undertaken, in part,
thanks to funding from the Canada Research Chairs program.
Notes and references
1 For an overview see: (a) M. Labet and W. Thielemans, Chem. Soc.
Rev., 2009, 38, 3484; (b) R. H. Platel, L. M. Hodgson and
C. K. Williams, Polym. Rev., 2008, 48, 11; (c) J. Wu, T.-L. Yu,
C.-T. Chen and C.-C. Lin, Coord. Chem. Rev., 2006, 250, 602;
(d) B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman, J. Chem. Soc.,
Dalton Trans., 2001, 2215.
2 D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Titanium in
Medicine: Materials Science, Surface Science, Engineering, Biological
Responses and Medical Applications, Springer, 2001.
Fig. 2 (a) Reaction profiling the consumption of LA ( ) and CL ( ) during
copolymerisation; (b) monitoring the presence of LA homodiads ( ),
CL homodiads ( ) and heterodiads (Â) over time.
3 (a) Polymers for Biomedical Application, ed. A. Mahapataro and
A. S. Kulshrestha, American Chemical Society, 2008; (b) L. S. Nair
and C. T. Laurencin, Prog. Polym. Sci., 2007, 32, 762.
(entry 2). The change from initiator 1 to 2, resulted in a decrease in
PDI and more importantly a reduction in LLL and a decrease in the
LA content (48%). A Tg of À3.3 1C is obtained for copolymer
synthesised using 2, where the theoretical value is À20.8 1C,16 while
Tm was not observed. Pushing the reactivity trends further, to
3-phenyl-pyridonate 3, results in an increase in Mn, but a return
to higher levels of LA incorporation. Although the yield with initiator
4 is modest, an unusual preference for CL incorporation is observed.
In contrast, PLA dominates when bulkier amidate complex 5 is
employed.
¨ ¨
4 (a) J. Rich, T. Karjalainen, L. Ahjopalo and J. Seppala, J. Appl. Polym.
¨ ¨
Sci., 2002, 86, 1; (b) T. Karjalainen, J. Rich and J. Seppala, J. Appl.
Polym. Sci., 2001, 81, 2118; (c) N. Kunou, Y. Ogura, T. Yasukawa,
H. Kimura, H. Miyamoto, Y. Honda and Y. Ikada, J. Controlled
Release, 2000, 68, 263.
¨ ¨
5 (a) N. Ahola, J. Rich, T. Karjalainen and J. Seppala, J. Appl. Polym.
Sci., 2003, 88, 1279; (b) M. Hiljanen-Vainio, T. Karjalainen and
¨ ¨
J. Seppala, J. Appl. Polym. Sci., 1996, 59, 1281.
6 (a) D. Dakshinamoorthy and F. Peruch, J. Polym. Sci., Part A: Polym.
Chem., 2012, 50, 2161; (b) Y. Wang and H. Ma, Chem. Commun.,
2012, 48, 6729; (c) D. J. Darensbourg and O. Karroonnirum, Macro-
molecules, 2010, 43, 8880; (d) N. Nomura, A. Akita, R. Ishii and
M. Mizuno, J. Am. Chem. Soc., 2010, 132, 1750; (e) D. Pappalardo,
L. Annunziata and C. Pellecchia, Macromolecules, 2009, 42, 6056;
( f ) M. Florczak and A. Duda, Angew. Chem., Int. Ed., 2008, 47, 9088.
7 R. K. Thomson, J. A. Bexrud and L. L. Schafer, Organometallics, 2006,
25, 4069.
8 (a) Z. Zhang, D. C. Leitch, M. Lu, B. O. Patrick and L. L. Schafer,
Chem.–Eur. J., 2007, 13, 2012; (b) C. Li, R. K. Thomson, B. Gillon,
B. O. Patrick and L. L. Schafer, Chem. Commun., 2003, 2462;
(c) Z. Zhang and L. L. Schafer, Org. Lett., 2003, 5, 4733.
Investigation of the carbonyl region of the 13C{1H} NMR
spectrum reveals that all of the copolymers undergo transester-
ification.17 Reaction monitoring of polymerisation catalysed by 3
shows rapid polymerisation of LA to form longer chains of PLA
(6 h: LCL 1.5; LLL 5.7) with CL reacting modestly (Fig. 2a). CL/LA
ratios remain static after 10 h, where there is also a concomitant
increase in the presence of heterodiads (CL–LA bonds), thereby
reiterating the randomising effect of transesterification (Fig. 2b).
After 10 h LLL and LCL reach their final observed values, however, Mn
is 12 550 g molÀ1 and the PDI is 1.48 (compared to 22 320 g molÀ1
9 R. O. Ayinla and L. L. Schafer, Inorg. Chim. Acta, 2006, 359, 3097.
10 J. A. Bexrud, P. Eisenberger, D. C. Leitch, P. R. Payne and
L. L. Schafer, J. Am. Chem. Soc., 2009, 131, 2116.
and 1.38 in the final isolated polymer). This data suggests that the 11 (a) L. J. E. Stanlake, J. D. Beard and L. L. Schafer, Inorg. Chem., 2008,
47, 8062. Bis-ligated examples: (b) F. Zhang, J. Zhang, H. Song and
G. Zi, Inorg. Chem. Commun., 2011, 14, 72; (c) Q. Wang, F. Zhang,
H. Song and G. Zi, J. Organomet. Chem., 2011, 696, 2186.
polymer chain continues to grow after the 10 h time period through
transesterification.18,19 Methanol soluble (i.e. low mass) fractions of
the quenched reaction solutions were subjected to qualitative 12 See ESI†.
13 J. A. Bexrud and L. L. Schafer, Dalton Trans., 2010, 39, 361.
14 Selected rac-LA examples include: (a) A. D. Schwarz, K. R. Herbert,
MALDI-TOF analysis. Low mass cyclic species and short linear
chains composed of half lactide units can be seen. The methyl ester
C. Paniagua and P. Mountford, Organometallics, 2010, 29, 4171;
peak, resulting from methanol-quenched transesterifications, is also
present in the 1H NMR spectrum.12
(b) A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn,
M. F. Mahon, A. F. Johnson, P. Khunkamchoo, S. L. Roberts and
S. S. F. Wong, Macromolecules, 2006, 39, 7250; (c) S. Gendler,
S. Segal, I. Goldberg, Z. Goldschmidt and M. Kol, Inorg. Chem.,
2006, 45, 4783; (d) C. K. A. Gregson, I. J. Blackmore, V. C. Gibson,
N. J. Long, E. L. Marshall and A. J. P. White, Dalton Trans., 2006,
3134; (e) M. H. Chisholm, C. C. Lin, J. C. Gallucci and B. T. Ko,
Dalton Trans., 2003, 406; ( f ) Y. Kim, G. K. Jnaneshwara and
J. G. Verkade, Inorg. Chem., 2003, 42, 1437.
In conclusion, novel bis(pyridonate)- and bis(amidate)-titanium-
alkoxides have been isolated in excellent yield. All can be prepared
under mild reaction conditions from a common precursor,
Ti(NMe2)4. The complexes have been used in the polymerisation
of LA and CL and are the first examples of polymerisation initiated
by this class of titanium compound. Most importantly, these
titanium initiators can be used for copolymer synthesis with short
sequence lengths, close to 1 : 1 monomer incorporation and good
Mn due to transesterification. We plan to further exploit our
synthesis of random copolymers with these readily modified ligand
15 Selected e-CL examples include: (a) D. Dakshinamoorthy and
F. Peruch, J. Polym. Sci., Part A: Polym. Chem., 2012, 49, 5176;
(b) A. D. Schwarz, A. L. Thompson and P. Mountford, Inorg. Chem.,
2009, 48, 10442; (c) J. Cayuela, V. Bounor-Legare, P. Cassagnau and
A. Michel, Macromolecules, 2006, 39, 1338; (d) A. J. Chmura,
M. G. Davidson, M. D. Jones, M. D. Lunn and M. F. Mahon, Dalton
Trans., 2006, 887.
sets to access a family of polymerisation catalysts affording a large 16 (a) Y. Gnanou and M. Fontanille, Organic and Physical Chemistry of
Polymers, Wiley, USA, 2008; (b) J. M. Vion, R. Jerome, P. Teyssie,
M. Aubin and R. E. Prudhomme, Macromolecules, 1986, 19, 1828.
17 J. Kasperczyk and M. Bero, Makromol. Chem., 1993, 194, 913.
scope of Mn, sequence length and level of transesterification. Such
synthetic results, polymer characterization and rheological investi-
gations will be reported shortly.
18 (a) H. R. Kricheldorf, K. Bornhorst and H. Hachmann-Thiessen,
Macromolecules, 2005, 38, 5017; (b) P. Vanhoorne, P. Dubois,
R. Jerome and P. Teyssie, Macromolecules, 1992, 25, 37.
19 It can be assumed that transesterification continues to proceed after
10 h because there is no significant change in the LLL and LCLvalues.
NSERC and NOVA Chemicals Corporation are acknowledged
for financial support of this work. RLW thanks the Government
of Canada for a Commonwealth PDRF. We thank Derek P. Gates
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 57--59 59