6828
B. Olszewska et al. / Tetrahedron Letters 53 (2012) 6826–6829
Table 2
Tetrahedron 2006, 62, 7213–7256; (f) Coldham, I.; Hufton, R. Chem. Rev. 2005,
105, 2765–2810.
Effect of solvent on the asymmetric allylic amination of substrate 5c using ligand L1a
3. (a) Li, J. J.; Gribble, G. Palladium in Heterocyclic Chemistry; Pergamon Press: New
York, 2000; (b) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285–2309; (c)
Wolfe, J. P.; Thomas, J. S. Curr. Org. Chem. 2005, 9, 625–656; (d) Balme, G.;
Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 4101–4111; (e) D’Souza, D.
M.; Müller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095–1108; (f) Zeni, G.; Larock, R. C.
Chem. Rev. 2006, 106, 4644–4680; (g) Minatti, A.; Muniz, K. Chem. Soc. Rev.
2007, 36, 1142–1152.
Entry
Solvent
Yield (%)
er (%)
1
2
3
4
THF
99
98
99
43
90:10
75:25
89:11
55:45
CH2Cl2
Toluene
CH3CN
4. (a) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400–3420; (b) Trend, R. M.;
Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42,
2892–2895; (c) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. J. Am.
Chem. Soc. 2005, 127, 17778–17788; (d) Rogers, M. M.; Wendlandt, J. E.; Guzei,
I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257–2260; (e) Lu, X. Top. Catal. 2005, 35, 73–
86; (f) Lei, A.; Liu, G.; Lu, X. J. Org. Chem. 2002, 67, 974–980; (g) Kozawa, Y.;
Mori, M. Tetrahedron Lett. 2002, 43, 1499–1502; (h) Kimura, M.; Wakamiya, Y.;
Horino, Y.; Tamaru, Y. Tetrahedron Lett. 1997, 38, 3963–3966; (i) Meguro, M.;
Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421–5424; (j) Bajracharya, G. B.;
Huo, Z.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4883–4886; (k) Bertrand, M. B.;
Leathen, M. L.; Wolfe, J. P. J. Org. Chem. 2007, 9, 457–460; (l) Scarborough, C. C.;
Stahl, S. S. Org. Lett. 2006, 8, 3251–3254; (m) Davies, I. W.; Scopes, D. I. C.;
Gallagher, T. Synlett 1993, 85–87.
a
[5c]:[Pd2(dba)3]:[ligand] = 40:1:4.4, 20 °C, 24 h.
Table 3
Effect of the palladium precursor on the asymmetric allylic amination of substrate 5ca
Entry
[Pd] precursor
Ligand
Time (h)
Yield (%)
er (%)
1
2
3
4
5
6
7
8
9
Pd2dba3
[PdCl(C3H5)]2
Pd(OAc)2
Pd2dba3
[PdCl(C3H5)]2
Pd(OAc)2
Pd2dba3
[PdCl(C3H5)]2
Pd(OAc)2
(S)-BINAP
(S)-BINAP
(S)-BINAP
(R,S)-Josiphos
(R,S)-Josiphos
(R,S)-Josiphos
L1
48
24
24
48
24
24
24
24
24
45
89
83
10
50
95
99
0
65:35
56:44
40:60
66:34
61:39
54:46
90:10
—
5. (a) Kimura, M.; Tamaki, T.; Nakata, M.; Tohyama, K.; Tamaru, Y. Angew. Chem.,
Int. Ed. 2008, 47, 5803–5805; (b) Baeg, J.-O.; Alper, H. J. Am. Chem. Soc. 1994,
116, 1220–1224; (c) Baeg, J.-O.; Bensimon, C.; Alper, H. J. Am. Chem. Soc. 1995,
117, 4700–4701.
L1
L1
6. (a) Grigg, R.; Srdharan, V.; Suganthan, S.; Bridge, A. W. Tetrahedron 1995, 51,
295–306; (b) Chao, C. S.; Chu, D. Y.; Lee, D. Y.; Shim, S. C.; Kim, T. J.; Lim, W. T.;
Heo, N. H. Synth. Commun. 1997, 27, 4141–4158; (c) Gabriele, B.; Salerno, G.;
Costa, M.; Chiusoli, G. P. J. Organomet. Chem. 2003, 687, 219–228; (d) Gabriele,
B.; Mancuso, R.; Salerno, G.; Costa, M. J. Org. Chem. 2003, 68, 601–604; (e) Li, F.;
Xia, C. J. Catal. 2004, 227, 542–546; (f) Gabriele, B.; Plastina, P.; Salerno, G.;
Mancuso, R.; Costa, M. Org. Lett. 2007, 9, 3319–3322; (g) Mizutani, T.; Ukaji, Y.;
Inomata, K. Bull. Chem. Soc. Jpn. 2003, 76, 1251–1256; (h) Danishefsky, S.;
Taniyama, E. Tetrahedron Lett. 1983, 24, 15–18; (i) Bates, R. W.; Sa-Ei, K. Org.
Lett. 2002, 4, 4225–4227.
7. (a) Hyland, C. Tetrahedron 2005, 61, 3457–3471; (b) Patil, N. T.; Yamamoto, Y.
Top. Organomet. 2006, 19, 91–113.
8. (a) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792–3794; (b)
Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1988, 110, 7933–7935; (c) Trost, B.
M.; Hurnaus, R. Tetrahedron Lett. 1989, 30, 3893–3896.
9. (a) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747–760;
(b) Trost, B. M.; Crawley, M. I. Chem. Rev. 2003, 103, 2921–2943; (c) Trost, B. M.
Acc. Chem. Res. 1996, 29, 355–364; (d) Trost, B. M.; Van Vranken, D. L. Chem. Rev.
1996, 96, 395–422; (e) Trost, B. M.; Krische, M. J.; Radinov, R.; Zanoni, G. J. Am.
Chem. Soc. 1996, 118, 6297–6298.
10. (a) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140; (b) Tsuji, J.; Shimizu, I.;
Minami, I.; Ohashi, Y. Tetrahedron Lett. 1982, 46, 4809–4812; (c) Seki, M.; Mori,
Y.; Hatsuda, M.; Yamada, S.-I. J. Org. Chem. 2002, 67, 5527–5536.
11. (a) Zawisza, A.; Sinou, D. Tetrahedron Lett. 2006, 47, 3271–3274; (b) Zawisza,
A.; Fenêt, B.; Sinou, D. Eur. J. Org. Chem. 2007, 2296–2309; (c) Olszewska, B.;
Kryczka, B.; Zawisza, A. Lett. Org. Chem. 2012, 9, 563–567.
12. Fernandez-Garcia, C.; McKervey, M. A Tetrahedron: Asymmetry 1995, 6, 2905–2906.
13. (a) Enders, D.; Nolte, B.; Raabe, G.; Runsink, J. Tetrahedron: Asymmetry 2002, 13,
285–292; (b) Fischer, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem. Soc.
2006, 128, 1472–1473.
14. (a) Oppolzer, W.; Gorrichon, L.; Bird, T. G. C. Helv. Chim. Acta 1981, 64, 186–187;
(b) Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223–
226; (c) Jung, M. E.; Zhang, T.-H.; Lui, R. M.; Gutierrez, O.; Houk, K. N. J. Org.
Chem. 2010, 75, 6933–6940.
80
83:17
a
[5c]:[Pd2(dba)3]:[ligand] = 40:1:2.2 (4.4); [5c]:[PdCl(C3H5)]2:[ligand] = 50:1:2.2
(4.4); [5c]:[Pd(OAc)2]:[ligand] = 40:1:2.2 (4.4); THF, 20 °C.
In CH2Cl2, product 6b was obtained in an excellent yield but
somewhat lower enantioselectivity. The use of CH3CN resulted in
a significant decrease in both the yield and selectivity.
We also investigated the effect of the palladium precursor on
this cyclisation reaction (Table 3).15
The reaction using [PdCl(C3H5)]2 or Pd(OAc)2 as the palladium
precursor provided good yields of 6b (Table 3, entries 2, 3, 5 and
6), but the enantioselectivity decreased. Cyclisation of 5c in the
presence of Pd(OAc)2 and ligand L1 gave a product with a lower
yield and selectivity than for the reaction catalysed by Pd2(dba)3
and L1 (Table 3, entries 7 and 9). It should also be noted that no
cyclisation product was observed with the use of [PdCl(C3H5)]2
and ligand L1 (Table 3, entry 8).
2-Vinylpyrrolidine and 2-vinylpiperidines were obtained in rel-
atively good yields and with enantiomeric ratios of up to 90:10 via
the Pd0-catalysed cyclisation of the corresponding amino allylic
carbonates. The highest enantioselectivities were obtained using
the phosphorus amidite ligand L1; some of the yields were very
good with Josiphos, but the enantioselectivities were lower.
15. General procedure for the Pd0-Catalysed Reaction: The catalytic system was
prepared by stirring Pd2(dba)3 (22.9 mg, 0.025 mmol) and the ligand
(0.055 mmol or 0.11 mmol) in an appropriate anhydrous solvent (3 mL) for
0.5 h in a Schlenk tube under argon. This solution was added, under argon, to a
Schlenk tube containing the unsaturated tosylamino carbonate 5a–c (1 mmol)
in an appropriate anhydrous solvent (3 mL). The solution was stirred at 25 °C
(or 60 °C). After 24 h, removal of the solvent followed by column
chromatography using a mixture of hexanes/EtOAc (2:1) as the eluent gave
the corresponding product.
Acknowledgements
This work was part-financed by the European Union within the
European Regional Development Fund (POIG.01.01.02-14-102/09).
Supplementary data
General procedure for the PdII-Catalysed Reaction: A solution of [PdCl(C3H5)]2
(5.5 mg, 0.015 mmol) and ligand (0.033 mmol or 0.066 mmol) or Pd(OAc)2
(3.4 mg, 0.015 mmol) and ligand (0.033 mmol or 0.066 mmol) in anhydrous
THF (3 mL) was added to unsaturated tosylamino carbonate 5a–c {0.75 mmol
for [PdCl(C3H5)]2 or 0.6 mmol for Pd(OAc)2} in THF (3 mL) under an argon
atmosphere. The mixture was stirred at room temperature for 24 h. The solvent
was evaporated and the residue was purified by column chromatography
(hexanes/EtOAc 2:1).
Supplementary data associated with this article can be found, in
the
online
version,
at
j.tetlet.2012.10.014.
References and notes
1-Tosyl-2-vinylpyrrolidine (6a). 1H NMR (600 MHz, CDCl3): d = 1.50–1.95 (m,
4H, 2H-3, 2H-4), 2.43 (s, 3H, CH3), 3.24 (ddd, 1H, J = 9.8, 7.1, 4.5 Hz, H-5), 3.44
(ddd, 1H, J = 9.8, 6.8, 4.5 Hz, H-5), 4.08–4.20 (m, 1H, H-2), 5.12 (dd, 1H, J = 10.2,
1.1 Hz, CH@CH2), 5.27 (dd, 1H, J = 17.0, 1.1 Hz, CH@CH2), 5.82 (ddd, 1H, J = 17.0,
10.2, 6.1 Hz, CH@CH2), 7.30 (d, 2H, J = 8.0 Hz, C6H4), 7.30 (d, 2H, J = 8.0, C6H4).
13C NMR (150 MHz, CDCl3): d = 21.4 (CH3), 23.6 (C-4), 32.2 (C-3), 48.7 (C-5),
61.8 (C-2), 115.2 (CH@CH2), 127.5, 129.3 (C6H4), 138.7 (CH@CH2), 135.0, 143.2
(C6H4); EI-MS m/z 251.1 (14%, M+), 91.1 (100), 224.1 (65), 155.0 (63), 96.1 (59);
HRMS (EI) Calcd for C13H17NO2S (M+) 251.0980. Found 251.0975.
1. (a) Lewis, J. R. Nat. Prod. Rep. 2001, 18, 95–128; (b) Kang, E. J.; Lee, E. Chem. Rev.
2005, 105, 4348–4378; (c) Bermejo, A.; Figadere, B.; Zafra-Polo, M.-C.;
Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269–309; (d)
Saleem, M.; Kim, H. J.; Ali, M. S.; Lee, Y. S. Nat. Prod. Rep. 2005, 22, 696–716; (e)
Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556–1575.
2. (a) Kanemasa, S. Synlett 2002, 1371–1387; (b) Gothelf, K. V.; Jorgensen, K. A.
Chem. Commun. 2000, 1449–1458; (c) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem.
2003, 3693–3712; (d) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay,
K. B.; Machan, T.; Tang, M. Synlett 2004, 2670–2680; (e) Bellina, F.; Rossi, R.