Full Paper
[1] a) C. Kinnaert, M. Daugaard, F. Nami, M. H. Clausen, Chem. Rev. 2017,
117, 11337–11405; b) A. J. Griffiths, D. B. Davies, Carbohydr. Polym. 1991,
14, 241–279.
[2] a) H. Paulsen, Angew. Chem. Int. Ed. Engl. 1982, 21, 155–173; Angew.
Chem. 1982, 94, 184; b) E. S. H. El Ashry, N. Rashed, E. S. I. Ibrahim,
Tetrahedron 2008, 64, 10631–10648; c) S. S. Nigudkar, A. V. Demchenko,
Chem. Sci. 2015, 6, 2687–2704; d) D. Crich, Acc. Chem. Res. 2010, 43,
1144–1153.
vides a direct ꢀ-glycosylation method for the installation of
the key ꢀ-L-Rha unit but also facilitates the assembly of the α-
L-Rha-(1→3)-L-Rha intersaccharidic linkage.
Conclusions
In conclusion, two stereoselective L-rhamnopyranosylation
methods have been developed. One is an α-selective rhamnos-
ylation reaction in which the 3-O-arylcarbonyl or Lev carrying
L-Rha thioglycosides are used as glycosyl donors to couple with
a variety of carbohydrate alcohols, forming the α-L-rhamnos-
ides in high chemical yields with complete α-selectivity. The
other is a ꢀ-rhamnosylation means adopting the 3-O-4-nitro-
picoloyl or 2-pyrazinecarbonyl-substituted L-Rha thioglycosides
as donors. The glycosylation stereochemistry of these donors is
found to mainly depend on the stereoelectronic nature of the
acceptors. High ꢀ-stereocontrol is obtained when these donors
glycosylate with the primary or reactive secondary acceptors,
while the ꢀ-selectivity may greatly drop in the couplings with
less reactive secondary carbohydrate nucleophiles. Utility of the
present methods allowed a concise and stereocontrolled syn-
thesis of a structurally unique trisaccharide 9 having both α-
and ꢀ-L-rhamnoside substructures. Further application of the
methods for the generation of biologically active L-Rha-contain-
ing glycoconjugates is currently underway.
[3] a) L. V. Backinovsky, N. F. Balan, A. S. Shashkov, N. K. Kochetkov, Carbo-
hydr. Res. 1980, 84, 225–235; b) T. Iversen, D. R. Bundle, Carbohydr. Res.
1980, 84, C13–C15; c) G. Hodosi, P. Kovác, J. Am. Chem. Soc. 1997, 119,
2335–2336; d) D. Crich, A. U. Vinod, J. Picione, J. Org. Chem. 2003, 68,
8453–8458; e) D. Crich, J. Picione, Org. Lett. 2003, 5, 781–784; f) F. W.
Lichtenthaler, T. Metz, Eur. J. Org. Chem. 2003, 3081–3093; g) Y.-G. Zhu,
Z.-N. Shen, W. Li, B. Yu, Org. Biomol. Chem. 2016, 14, 1536–1539.
[4] a) Y. J. Lee, A. Ishiwata, Y. Ito, J. Am. Chem. Soc. 2008, 130, 6330–6331;
b) I. Cumpstey, A. J. Fairbanks, A. J. Redgrave, Tetrahedron 2004, 60,
9061–9074.
[5] N. Nishi, K. Sueoka, K. Iijima, R. Sawa, D. Takahashi, K. Toshima, Angew.
Chem. Int. Ed. 2018, 57, 13858–13862; Angew. Chem. 2018, 130, 14054.
[6] a) J. P. Yasomanee, A. V. Demchenko, J. Am. Chem. Soc. 2012, 134, 20097–
20102; b) J. P. Yasomanee, A. V. Demchenko, Angew. Chem. Int. Ed. 2014,
53, 10453–10456; Angew. Chem. 2014, 126, 10621; c) S. G. Pistorio, J. P.
Yasomanee, A. V. Demchenko, Org. Lett. 2014, 16, 716–719; d) J. P. Yasom-
anee, A. V. Demchenko, Chem. Eur. J. 2015, 21, 6572–6581; e) A. K. Kay-
astha, X.-G. Jia, J. P. Yasomanee, A. V. Demchenko, Org. Lett. 2015, 17,
4448–4451.
[7] a) Q.-W. Liu, H.-C. Bin, J.-S. Yang, Org. Lett. 2013, 15, 3974–3977; b) P.-C.
Gao, S.-Y. Zhu, H. Cao, J.-S. Yang, J. Am. Chem. Soc. 2016, 138, 1684–1688;
c) W. Huang, Y.-Y. Zhou, X.-L. Pan, X.-Y. Zhou, J.-C. Lei, D.-M. Liu, Y. Chu,
J.-S. Yang, J. Am. Chem. Soc. 2018, 140, 3574–3582; d) K. Zhu, J.-S. Yang,
Tetrahedron 2016, 72, 3113–3123; e) Y. Xu, H.-C. Bin, F. Su, J.-S. Yang,
Tetrahedron Lett. 2017, 58, 1548–1552.
[8] F. G. Braga, E. S. Coimbra, M. de O. Matos, A. M. L. Carmo, M. D. Cancio,
A. D. da Silva, Eur. J. Med. Chem. 2007, 42, 530–537.
Experimental Section
[9] K. Bock, C. Pedersen, J. Chem. Soc., Perkin Trans. 2 1974, 293–297.
[10] S. S. Mandal, N. V. Ganesh, J. M. Sadowska, D. R. Bundle, Org. Biomol.
Chem. 2017, 15, 3874–3883.
[11] F. W. D'Souza, J. D. Ayers, P. R. McCarren, T. L. Lowary, J. Am. Chem. Soc.
2000, 122, 1251–1260.
General glycosylation between donors and acceptors under the
promotion of NIS/TfOH: A mixture of glycosyl donor (1.5 equiv.),
glycosyl acceptor (1.0 equiv.), and freshly activated 4 Å molecular
sieves in CH2Cl2 (50 mM) was stirred under nitrogen for 1 hour at
room temperature. The reaction was cooled to –78 °C, then NIS
(1.5 equiv.) and TfOH (0.1 equiv.) were added. The reaction mixture
was gradually warmed to –20 °C and stirred for 2 to 3 hours at the
same temperature. The reaction was quenched with Et3N, diluted
with CH2Cl2 and filtered. The filtrate was concentrated in vacuo. The
resulting residue was purified by silica gel column chromatography
to afford the glycoside product.
[12] J. A. Montgomery, A. T. Shortnacy, H. J. Thomas, J. Med. Chem. 1974, 17,
1197–1207.
[13] T. G. Frihed, M. Heuckendorff, C. M. Pedersen, M. Bols, Angew. Chem. Int.
Ed. 2012, 51, 12285–12288; Angew. Chem. 2012, 124, 12451.
[14] S. Rana, J. J. Barlow, K. L. Matta, Carbohydr. Res. 1980, 85, 313–317.
[15] M. L. Tong, F. Huber, E. S. T. Kaptouom, T. Cellnik, S. F. Kirsch, Chem.
Commun. 2017, 53, 3086–3089.
[16] J. Xue, J. Wu, Z.-W. Guo, Org. Lett. 2004, 6, 1365–1368.
[17] O. Renaudet, P. Dumy, Tetrahedron 2002, 58, 2127–2135.
[18] M.-J. Xia, W. Yao, X.-B. Meng, Q.-H. Lou, Z.-J. Li, Tetrahedron Lett. 2017,
58, 2389–2392.
Conflicts of interest
The authors declare no competing financial interest.
[19] F. Feng, K. Okuyama, K. Niikura, T. Ohta, R. Sadamoto, K. Monde, T. Nogu-
chi, S.-I. Nishimura, Org. Biomol. Chem. 2004, 2, 1617–1623.
[20] S. S. Shivatare, S.-H. Chang, T.-I. Tsai, C.-T. Ren, H.-Y. Chuang, L. Hsu, C.-W.
Lin, S.-T. Li, C.-Y. Wu, C.-H. Wong, J. Am. Chem. Soc. 2013, 135, 15382–
15391.
[21] M. Sollogoub, S. K. Das, J. M. Mallet, P. Sinaÿ, C. R. Seances Acad. Sci.,
Ser. 2 1999, 2, 441–448.
[22] N. Pravdić, D. Keglević, Tetrahedron 1965, 21, 1897–1901.
[23] W. B. Severn, J. C. Richards, J. Am. Chem. Soc. 1993, 115, 1114–1120.
[24] M. Takeda, S. Nomoto, J.-I. Koizumi, Biosci. Biotechnol. Biochem. 2002, 66,
1546–1551.
Acknowledgments
We appreciate the financial support from the National Natural
Science Foundation (21772132, 21572145), the Ministry of Sci-
ence and Technology (2017ZX09101003–005–004), and the
Fundamental Research Funds for the Central Universities of
China.
Keywords: Carbohydrates · Glycosides · Glycosylation ·
Stereoselective synthesis · Synthetic methods
Received: August 11, 2019
Eur. J. Org. Chem. 2019, 6377–6382
6382
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim