(d) D. M. Hodgson, P. G. Humphreys and S. P. Hughes, Pure
Appl. Chem., 2007, 79, 269; (e) D. M. Hodgson, P. G. Humphreys,
S. M. Miles, C. A. J. Brierley and J. G. Ward, J. Org. Chem., 2007,
72, 10009; (f) D. M. Hodgson, P. G. Humphreys, Z. Xu and
J. G. Ward, Angew. Chem., Int. Ed., 2007, 46, 2245;
(g) F. Affortunato, S. Florio, R. Luisi and B. Musio, J. Org.
Chem., 2008, 73, 9214; (h) B. Musio, G. J. Clarkson, M. Shipman,
S. Florio and R. Luisi, Org. Lett., 2009, 11, 325; (i) F. Schmidt,
F. Keller, E. Vedrenne and V. K. Aggarwal, Angew. Chem., Int.
Ed., 2009, 48, 1149; (j) J. Huang, S. P. Moore, P. O’Brien,
A. C. Whitwood and J. Gilday, Org. Biomol. Chem., 2009, 7, 335.
7 J. M. Nelson and E. Vedejs, Org. Lett., 2010, 12, 5085.
8 G. S. Singh, M. D’hooghe and N. De Kimpe, Chem. Rev., 2007,
107, 2080.
9 (a) A. G. Cook and E. K. Fields, J. Org. Chem., 1962, 27, 3686;
(b) J. A. Deyrup and R. B. Greenwald, J. Am. Chem. Soc., 1965,
87, 4538; (c) M. Mihara, Y. Ishino, S. Minakata and M. Komatsu,
J. Org. Chem., 2005, 70, 5320.
10 H. Yamanaka, J. Kikui, K. Teramura and T. Ando, J. Org. Chem.,
1976, 41, 3794.
Scheme 4 Orientation for cyclisation; A preferred (Ar and I cis).
conditions with 1a led to the formation of the corresponding
bromoaziridine (5) with exclusive cis-stereochemistry in an
unoptimised yield of 30%.
Our proposal for the cis-selectivity in forming the iodoazir-
idines is based on steric factors (Scheme 4).31 The aryl and Boc
groups are likely to adopt an anti-orientation preferentially,
providing two conformations (A and B) with N and I in an
anti-periplanar arrangement appropriate for cyclisation. We
propose that an unfavourable interaction between the non-
displaced iodide with the Boc group is dominant in the
cyclisation transition state where the N-atom becomes sp3
hybridised. Hence the non-displaced iodine prefers to adopt
a position away from the bulk of the Boc group and so gauche
to the Ph group, resulting in the cis-aziridine configuration.
In summary, we report the first examples of iodoaziridines.
The use of diiodomethyllithium with careful temperature control
allows either the isolation of the amino-diiodide or complete
cyclisation to the iodoaziridine with very high cis-selectivity, and
both with excellent yields. We are currently developing methods
for the functionalisation of iodoaziridines to various aziridine
derivatives, which will be reported in due course.
11 F. E. Ziegler and M. Belema, J. Org. Chem., 1994, 59, 7962.
12 (a) F. E. Ziegler and M. Belema, J. Org. Chem., 1997, 62, 1083;
(b) F. E. Ziegler and M. Y. Berlin, Tetrahedron Lett., 1998,
39, 2455.
13 L. B. Krasnova and A. K. Yudin, Org. Lett., 2006, 8, 2011.
14 R. Shen and X. Huang, Org. Lett., 2009, 11, 5698.
15 K. Yagi, H. Shinokubo and K. Oshima, Org. Lett., 2004,
6, 4339.
16 E. Van Hende, G. Verniest, R. Surmont and N. De Kimpe,
Org. Lett., 2007, 9, 2935.
17 For the formation of terminal aziridines using iodomethyllithium
see: (a) J. M. Concello
C. Simal, J. Org. Chem., 2009, 74, 2452; (b) J. M. Concello
H. Rodrıguez-Solla and C. Simal, Org. Lett., 2008, 10, 4457.
´
n, H. Rodrı
´
guez-Solla, P. L. Bernad and
´
n,
´
18 For a related reaction using LiCHCl2 see: (a) J. A. Deyrup and
R. B. Greenwald, Tetrahedron Lett., 1965, 321; (b) Also see ref. 15.
19 (a) J. A. Bull and A. B. Charette, J. Org. Chem., 2008, 73, 8097;
(b) J. A. Bull and A. B. Charette, J. Am. Chem. Soc., 2010,
132, 1895.
20 J. A. Bull, J. J. Mousseau and A. B. Charette, Org. Lett., 2008,
10, 5485.
21 (a) M. B. Boxer and H. Yamamoto, Org. Lett., 2008, 10, 453;
(b) D. S. W. Lim and E. A. Anderson, Org. Lett., 2011, 13, 4806.
22 The use of NaHMDS to form NaCHI2 resulted in decomposition.
23 M. Petrini, Chem. Rev., 2005, 105, 3949.
24 For the preparation of imine sulfinic acids: A. G. Wenzel and
E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 12964.
25 Compound 3a was assigned as the cis-aziridine on the basis of IR
stretch (CQO; 1724 cmÀ1) and characteristic 1H NMR coupling
constants (J = 5.4 for aziridine CH).
For financial support we gratefully acknowledge the
EPSRC (Career Acceleration Fellowship to JAB), the Ramsay
Memorial Trust (Research Fellowship 2009–2011 to JAB),
The Royal Society for a research grant, the Nuffield foundation
and Pfizer for UG bursaries (TT, TB), and Imperial College
London. Thank you to Prof Alan Armstrong for generous
support and advice.
Notes and references
1 (a) Aziridines and Epoxides in Organic Synthesis, ed. A. K. Yudin,
Wiley-VCH, Weinheim, 2006; (b) J. B. Sweeney, Chem. Soc. Rev.,
2002, 31, 247; (c) A. Padwa and S. S. Murphree, Arkivoc, 2006,
iii, 6.
26 Iodoaziridine 3a was stable to silica gel and in solution. On
concentration the neat compound showed significant sensitivity
to light leading to decomposition. Iodoaziridines were stored as
stock solutions in dichloromethane at À20 1C. Under these
conditions 3a was stable for >4 weeks.
2 (a) G. Cardillo, L. Gentilucci and A. Tolomelli, Aldrichimica Acta,
2003, 36, 39; (b) I. C. Stewart, C. C. Lee, R. G. Bergman and
F. D. Toste, J. Am. Chem. Soc., 2005, 127, 17616; (c) P. Lu,
Tetrahedron, 2010, 66, 2549.
3 For recent reviews see: (a) H. Pellissier, Tetrahedron, 2010,
66, 1509; (b) J. Sweeney, Eur. J. Org. Chem., 2009, 4911;
(c) Y. Zhang, Z. Lu and W. Wulff, Synlett, 2009, 2715; (d) I. D.
G. Watson, L. Yu and A. K. Yudin, Acc. Chem. Res., 2006,
39, 194.
27 Low temperature is required for the initial addition to ensure the
stability of LiCHI2.
28 See ESIw for further details on 1H NMR sampling studies into the
rate of addition and cyclisation. This supports our mechanistic
hypothesis of addition followed by cyclisation at elevated temperatures,
rather than an alternative mechanism via diiodocarbene. Quenching the
reaction at À78 1C with D2O (forming 2a) did not lead to any
incorporation of deuterium in place of the CHI2 proton, but partial
incorporation at NH. This suggests that the intermediate diiodide is not
deprotonated to the carbenoid under the reaction conditions.
29 A possible explanation for effect of rate of warming on product
distribution is that elimination is caused by excess LiCHI2 which
decomposes rapidly on warming to non-basic species, preventing
the undesired elimination reaction.
4 (a) S. Florio and R. Luisi, Chem. Rev., 2010, 110, 5128;
(b) T. Satoh, Chem. Rev., 1996, 96, 3303; (c) S. Florio, Synthesis,
2012, 44, 2872.
5 (a) E. Vedejs and W. O. Moss, J. Am. Chem. Soc., 1993, 115, 1607;
(b) E. Vedejs and J. Little, J. Am. Chem. Soc., 2002, 124, 748;
(c) T. Satoh, T. Sato, T. Oohara and K. Yamakawa, J. Org. Chem.,
1989, 54, 3973; (d) T. Satoh, M. Ozawa, K. Takano, T. Chyouma
and A. Okawa, Tetrahedron, 2000, 56, 4415; (e) T. Satoh,
R. Matsue, T. Fujii and S. Morikawa, Tetrahedron, 2001,
57, 3891; (f) S. D. Wiedner and E. Vedejs, Org. Lett., 2010,
12, 4030.
6 (a) P. Beak, S. Wu, E. K. Yum and Y. M. Jun, J. Org. Chem., 1994,
59, 276; (b) D. M. Hodgson, P. G. Humphreys and J. G. Ward,
Org. Lett., 2005, 7, 1153; (c) D. M. Hodgson, B. Stefane,
T. J. Miles and J. Witherington, J. Org. Chem., 2006, 71, 8510;
30 For o-substituted aryl imines influencing d.r. in aziridine
formation, see: A. B. McLaren and J. B. Sweeney, Org. Lett.,
1999, 1, 1339.
31 Alternative explanations involving electronic factors may be possible.
See ESIw for further discussion.
c
12248 Chem. Commun., 2012, 48, 12246–12248
This journal is The Royal Society of Chemistry 2012