ChemComm
Communication
Table 1 Summary of device properties
regioregular PIPT-RG and the polymer obtained through
conventional synthesis (PIPT-RA) are essentially identical
within the certainties of the measurements. However, the FET
hole mobility of PIPT-RG is higher than that of PIPT-RA. Of
particular note is that the PCE values of BHJ solar cells with
PIPT-RG are significantly improved and that in these devices
one finds from single carrier diode measurements that the hole
Device Polymer:PC71BM Voc (V) Jsc (mA cmꢀ2
)
FF (%) PCE (%)
A1
A2
B1
B2
PIPT-RA:PC71BM 0.82
PIPT-RG:PC71BM 0.88
PIPT-RA:PC71BM 0.86
PIPT-RG:PC71BM 0.88
10.5
12.1
12.3
13.9
40
48
43
55
3.4
5.1
4.5
6.7
Devices A1 and A2 have conventional structure: ITO/MoO3/poly-
mer:PC71BM (1 : 4 wt : wt)/Al, while B1 and B2 comprise the inverted mobilities are also higher. With inverted device structures one can
structure: ITO/ZnO/polymer : PC71BM (1 : 4 wt : wt)/MoO3/Ag.
obtain with PIPT-RG:PC71BM a PCE of 6.7%. From a practical
perspective, these findings highlight the benefits of controlling
the regiochemistry of PT-containing narrow bandgap conjugated
polymers.
We acknowledge the financial support from Mitsubishi
Chemical Center for Advanced Materials (MC-CAM). We thank
Prof. Alan J. Heeger, Dr Yanming Sun, Dr Soo-Hyung Choi and
Dr Chan Luo for technical assistance and helpful discussions.
Notes and references
Fig. 3 J–V curves (a) and external quantum efficiency spectra (b) of devices
1 (a) Z. B. Henson, K. Mullen and G. C. Bazan, Nat. Chem., 2012, 4,
based on polymer:PC71BM.
699–704; (b) J. W. Chen and Y. Cao, Acc. Chem. Res., 2009, 42,
1709–1718; (c) Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev.,
2009, 109, 5868–5923; (d) C. Li, M. Y. Liu, N. G. Pschirer,
M. Baumgarten and K. Mu¨llen, Chem. Rev., 2010, 110, 6817–6855.
2 (a) J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty,
K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang, Nat. Commun., 2013,
4, 1–10; (b) Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Nat.
Photonics, 2012, 6, 593–597; (c) C. Cabanetos, A. El Labban,
size in PIPT-RG:PC71BM could be responsible for the improve-
ments in device function.
Hole- and electron-only devices were specifically fabricated
to estimate the charge mobilities of the blend films by a
space charge limited current (SCLC) model as shown in
Fig. S6 (ESI†). The electron mobility of two devices are compar-
´
J. A. Bartelt, J. D. Douglas, W. R. Mateker, J. M. J. Frechet,
M. D. McGehee and P. M. Beaujuge, J. Am. Chem. Soc., 2013, 135,
4656–4659; (d) Y. Huang, X. Guo, F. Liu, L. J. Huo, Y. N. Chen,
T. P. Russell, C. C. Han, Y. F. Li and J. H. Hou, Adv. Mater., 2012, 24,
3383–3389; (e) T. B. Yang, M. Wang, C. H. Duan, X. W. Hu, L. Huang,
J. B. Peng, F. Huang and X. Gong, Energy Environ. Sci., 2012, 5, 8208–8214.
3 (a) I. Osaka and R. D. McCullough, Acc. Chem. Res., 2008, 41, 1202–1214;
(b) R. S. Loewe and R. D. McCullough, Chem. Mater., 2000, 12, 3214–3221;
(c) I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald,
M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang,
M. L. Chabinyc, R. J. Kline, M. D. McGehee and M. F. Toney, Nat. Mater.,
2006, 5, 328–333.
4 L. Ying, B. B. Y. Hsu, H. M. Zhan, G. C. Welch, P. Zalar, L. A. Perez,
E. J. Kramer, T. Q. Nguyen, A. J. Heeger, W. Y. Wong and
G. C. Bazan, J. Am. Chem. Soc., 2011, 133, 18538–18541.
5 H. R. Tseng, L. Ying, B. B. Y. Hsu, L. A. Perez, C. J. Takacs,
G. C. Bazan and A. J. Heeger, Nano Lett., 2012, 12, 6353–6357.
6 (a) I. McCulloch, R. S. Ashraf, L. Biniek, H. Bronstein, C. Combe,
J. E. Donaghey, D. I. James, C. B. Nielsen, B. C. Schroeder and
W. Zhang, Acc. Chem. Res., 2012, 45, 714–722; (b) Y. Zhang, J. Zou,
H. L. Yip, K. S. Chen, J. A. Davies, Y. Sun and A. K. Y. Jen, Macromolecules,
2011, 44, 4752–4758; (c) W. Zhang, J. Smith, S. E. Watkins, R. Gysel,
M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos,
M. Heeney and I. McCulloch, J. Am. Chem. Soc., 2010, 132,
11437–11439; (d) K. S. Chen, Y. Zhang, H. L. Yip, Y. Sun, J. A. Davies,
C. Ting, C. P. Chen and A. K. Y. Jen, Org. Electron., 2011, 12, 794–801;
(e) Y. C. Chen, C. Y. Yu, Y. L. Fan, L. I. Hung, C. P. Chen and C. Ting,
Chem. Commun., 2010, 46, 6503–6505; ( f ) C. P. Chen, S. H. Chan,
T. C. Chao, C. Ting and B. T. Ko, J. Am. Chem. Soc., 2008, 130,
12828–12833.
able (2 ꢁ 10ꢀ4 cm2 Vꢀ1
s
ꢀ1), most likely implying that the
properties of the PC71BM pathway are not modified signifi-
cantly. However, the PIPT-RG:PC71BM device exhibited higher
hole mobility (1.3 ꢁ 10ꢀ4 cm2 Vꢀ1
s
ꢀ1) relative to that of the
PIPT-RA:PC71BM device (3.1 ꢁ 10ꢀ5 cm2 Vꢀ1
s
ꢀ1). Since the
collected current is dependent on the charge transporting
properties of the BHJ layer, the higher hole mobility may be
responsible for the larger Jsc observed for the PIPT-RG based
device A2. Moreover, more balanced charge carrier mobility of
PIPT-RG:PC71BM blends will lead to an improvement in FF.
Further optimization of solar cell performance was achieved
through the use of inverted structures of the type ITO/ZnO/
polymer : PC71BM (1 : 4 wt : wt)/MoO3/Ag. These devices are
denoted in Table 1 as B1 and B2, respectively. Here the active
layers were also annealed at 100 1C for 10 min before cathode
deposition. The best inverted device structure (B1) with PIPT-RA
provided a PCE of 4.5%, (Jsc = 12.13 mA cmꢀ2, Voc = 0.86, and
FF = 43%). The best performing device with PIPT-RG exhibited a
much larger PCE of 6.7% (Jsc = 13.9 mA cmꢀ2, Voc = 0.88 V and
FF = 55%). The J–V characteristics and EQE spectra are shown in
Fig. 3 and the device performances are summarized in Table 1.
Note that the integrations of EQE spectra (Fig. 3b) are consistent
with the Jsc results obtained from J–V measurements.
7 Y. Sun, S. C. Chien, H. L. Yip, Y. Zhang, K. S. Chen, D. F. Zeigler,
F. C. Chen, B. P. Lin and A. K. Y. Jen, J. Mater. Chem., 2011, 21,
13247–13255.
8 J. K. Park, J. Jo, J. H. Seo, J. S. Moon, Y. D. Park, K. Lee, A. J. Heeger
and G. C. Bazan, Adv. Mater., 2011, 23, 2430–2435.
9 (a) F. M. Liu, S. Y. Shao, X. Y. Guo, Y. Zhao and Z. Y. Xie, Sol. Energy
Mater. Sol. Cells, 2010, 94, 842–845; (b) S. Murase and Y. Yang, Adv.
Mater., 2012, 24, 2459–2462.
10 G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and
Y. Yang, Nat. Mater., 2005, 4, 864–868.
In conclusion, we have observed that the PCEs of indaceno-
dithiophene-co-pyridyl[2,1,3]thiadiazole (IDT–PT) based copolymers
can be improved by precisely controlling the orientation of the
N-atom in the PT unit with respect to the polymer backbone.
One finds that the optical and electrochemical properties of the
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.