Communication
ChemComm
derivatives into bilayers with a core of hydrophobic di-alkyl Notes and references
chains coated by hydrophilic PEG, here there is less drive
towards curvature at the interface, the molecules pack as
effective cylinder-shaped objects.13,14
1 T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813–817.
2 M. F. J. Mabesoone, A. R. A. Palmans and E. W. Meijer, J. Am. Chem.
Soc., 2020, 142, 19781–19798.
3 M. A. J. Veld, D. Haveman, A. R. A. Palmans and E. W. Meijer, Soft
Matter, 2011, 7, 524–531.
4 S. Cantekin, T. F. A. de Greef and A. R. A. Palmans, Chem. Soc. Rev.,
2012, 41, 6125–6137.
5 C. Kulkarni, E. W. Meijer and A. R. A. Palmans, Acc. Chem. Res.,
2017, 50, 1928–1936.
6 S. Varela-Aramburu, G. Morgese, L. Su, S. M. C. Schoenmakers,
M. Perrone, L. Leanza, C. Perego, G. M. Pavan, A. R. A. Palmans and
E. W. Meijer, Biomacromolecules, 2020, 21, 4105–4115.
7 L. N. Neumann, M. B. Baker, C. M. A. Leenders, I. K. Voets,
R. P. M. Lafleur, A. R. A. Palmans and E. W. Meijer, Org. Biomol.
Chem., 2015, 13, 7711–7719.
8 G. Vantomme, G. M. ter Huurne, C. Kulkarni, H. M. M. ten Eikelder,
A. J. Markvoort, A. R. A. Palmans and E. W. Meijer, J. Am. Chem. Soc.,
2019, 141, 18278–18285.
9 N. M. Matsumoto, R. P. M. Lafleur, X. W. Lou, K. C. Shih,
S. P. W. Wijnands, C. Guibert, J. van Rosendaal, I. K. Voets,
A. R. A. Palmans, Y. Lin and E. W. Meijer, J. Am. Chem. Soc., 2018,
140, 13308–13316.
10 J. Roosma, T. Mes, P. Leclere, A. R. A. Palmans and E. W. Meijer,
J. Am. Chem. Soc., 2008, 130, 1120–1121.
The possible presence of micelles in certain BTA derivatives
has been suggested in several reports,16,17 but to the best of our
knowledge we provide the first direct evidence for such structures
in the novel BTA derivatives investigated. Nanosheets have been
observed in BTA derivatives with a hydrophobic core linked to
outer oligoethylene glycol units on two chains (the other arm
bearing lipidic carboxylic acids).9 Micelle and nanotape structures
have been observed for lipopeptide systems1,18–20 and studies
have explored the effect of the number of alkyl chains on the
self-assembly which includes an example where micelle and
nanotape structures are observed depending on the number of
palmitoyl (C16) chains.21 Nanotape structures are rarely observed
for lipids themselves, which tend to form lamellar assemblies (or
micelles) depending on concentration etc., and neither are they
commonly reported for mixed arm block polymers in selective
solvents, for which however micelles and vesicles have been
observed.22–25
11 I. W. Hamley, Small-Angle Scattering: Theory, Instrumentation, Data
and Applications, Wiley, Chichester, 2021.
12 G. Pabst, M. Rappolt, H. Amenitsch and P. Laggner, Phys. Rev. E:
Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 62,
4000–4009.
13 J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc.,
Faraday Trans. 2, 1976, 72, 1525–1568.
14 J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press,
San Diego, 1991.
15 I. W. Hamley, Introduction to Soft Matter. Revised Edition, Wiley,
Chichester, 2007.
16 L. Albertazzi, F. J. Martinez-Veracoechea, C. M. A. Leenders,
I. K. Voets, D. Frenkel and E. W. Meijer, Proc. Natl. Acad. Sci. U. S.
A., 2013, 110, 12203–12208.
17 X. Lou, R. P. M. Lafleur, C. M. A. Leenders, S. M. C. Schoenmakers,
N. M. Matsumoto, M. B. Baker, J. L. J. Van Dongen, A. R. A. Palmans
and E. W. Meijer, Nat. Commun., 2017, 8, 8.
In summary, we show that control of the self-assembled
nanostructure of BTA derivatives in aqueous solution can be
achieved by balancing the number and length of attached
hydrophilic and hydrophobic chains. BTA derivatives have
provided an exceptional platform for model studies of self-
assembling systems, especially one-dimensional self-
assembly.1,8,26,27 Here, we present evidence that novel BTA
derivatives undergo self-assembly into zero- and two-
dimensional structures. This will be valuable for future funda-
mental studies of self-assembly (nucleation, kinetics, self- and
cross-seeding etc.) as well as potential applications as delivery
agents, viscosity modifiers and many others and also as plat-
forms for further functionalization.
18 H. G. Cui, M. J. Webber and S. I. Stupp, Biopolymers, 2010, 94, 1–18.
19 I. W. Hamley, Soft Matter, 2011, 7, 4122–4138.
20 I. W. Hamley, Chem. Commun., 2015, 51, 8574–8583.
21 I. W. Hamley, S. Kirkham, A. Dehsorkhi, V. Castelletto, M. Reza and
J. Ruokolainen, Chem. Commun., 2014, 50, 15948–15951.
22 Z. Li, M. A. Hillmyer and T. P. Lodge, Langmuir, 2006, 22, 9409–9417.
23 I. W. Hamley, Block Copolymers in Solution, Wiley, Chichester, 2005.
24 A. O. Moughton, M. A. Hillmyer and T. P. Lodge, Macromolecules,
2012, 45, 2–19.
N. A. acknowledges support from the Saudi Arabian Cultural
Bureau. IWH was supported by EPSRC Platform grant EP/
L020599/1. We thank the ESRF for the award of beam time
(ref. MX-2345). We are grateful to Dr Lewis Hart for advice
concerning synthesis.
25 A. H. Groschel and A. H. E. Muller, Nanoscale, 2015, 7, 11841–11876.
26 J. van Gestel, A. R. A. Palmans, B. Titulaer, J. Vekemans and
E. W. Meijer, J. Am. Chem. Soc., 2005, 127, 5490–5494.
27 C. M. A. Leenders, L. Albertazzi, T. Mes, M. M. E. Koenigs,
A. R. A. Palmans and E. W. Meijer, Chem. Commun., 2013, 49,
1963–1965.
Conflicts of interest
There are no conflicts to declare.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021