ORGANIC
LETTERS
2013
Vol. 15, No. 1
96–99
Iron-Catalyzed Cross-Coupling Reactions
of Alkyl Grignards with Aryl Sulfamates
and Tosylates
Toolika Agrawal and Silas P. Cook*
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington,
Indiana 47405-7102, United States
Received November 13, 2012
ABSTRACT
The iron-catalyzed cross-coupling of aryl sulfamates and tosylates has been achieved with primary and secondary alkyl Grignards. This study of
iron-catalyzed cross-coupling reactions also examines the isomerization and β-hydride elimination problems that are associated with the use of
isopropyl nucleophiles. While a variety of iron sources were competent in the reaction, the use of FeF3•3H2O was critical to minimize nucleophile
isomerization.
Palladium-catalyzed cross-coupling reactions represent
over 60% of the carbonÀcarbon bond-forming reactions
used in medicinal chemistry today.1 This majority virtually
guarantees that every new clinical candidate will require a
process-scale implementation of a cross-coupling reaction.
The use of palladium raises the issue of residual contam-
ination that may affect subsequent transformations or
even the health of patients.2 As such, chemists need to
investigate new cross-couplingreactionscatalyzedbymore
benign metals. Iron, a historically important metal in
cross-coupling reactions,3 offers an appealing alternative
topalladium due toits low cost, broadavailability, and low
toxicity (Figure 1).4 Combined with an environmentally
friendly electrophile, iron-catalyzed cross-coupling reac-
tions could become the obvious alternative to palladium-
mediated processes.
The use of CÀO-based electrophiles provides an attrac-
tive cross-coupling partner that has been used widely
with Ni,5 and to a lesser extent with Pd.6 The ubiquity of
phenols and ketones combined with their favorable environ-
mental impact when compared to halogen substrates confers
clear advantages in using CÀO electrophiles. While triflates
and tosylates make up the majority of CÀO cross-coupling
(7) Antoft-Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc.
2009, 131, 17750.
(8) (a) Guan, B.-T.; Xiang, S.-K.; Wu, T.; Sun, Z.-P.; Wang, B.-Q.;
Zhao, K.-Q.; Shi, Z.-J. Chem. Commun. 2008, 1437. (b) Guan, B.-T.;
Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130,
14468. (c) Xu, L.; Li, B.-J.; Wu, Z.-H.; Lu, X.-Y.; Guan, B.-T.; Wang,
B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Org. Lett. 2010, 12, 884.
(9) (a) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc.
2008, 130, 14422. (b) Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg,
N. K. J. Am. Chem. Soc. 2009, 131, 17748. (c) Ramgren, S. D.;
Silberstein, A. L.; Yang, Y.; Garg, N. K. Angew. Chem., Int. Ed. 2011,
50, 2171. (d) Mesganaw, T.; Silberstein, A. L.; Ramgren, S. D.; Nathel,
N. F. F.; Hong, X.; Liu, P.; Garg, N. K. Chem. Sci. 2011, 2, 1766.
(e) Mesganaw, T.; Fine Nathel, N. F.; Garg, N. K. Org. Lett. 2012, 14,
2918. (f) Hie, L.; Ramgren, S. D.; Mesganaw, T.; Garg, N. K. Org. Lett.
2012, 14, 4182.
(10) (a) Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R.
J. Am. Chem. Soc. 2010, 133, 389. (b) Taylor, B. L. H.; Jarvo, E. R.
Synlett 2011, 2011, 2761. (c) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R.
Angew. Chem., Int. Ed. 2012, 51, 7790. (d) Greene, M. A.; Yonova, I. M.;
Williams, F. J.; Jarvo, E. R. Org. Lett. 2012, 14, 4293.
(1) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(2) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(3) (a) Tamura, M.; Kochi, J. J. Am. Chem. Soc. 1971, 93, 1487.
(b) Neumann, S. M.; Kochi, J. K. J. Org. Chem. 1975, 40, 599.
€
(4) (a) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500.
(b) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061.
(5) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(6) (a) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704.
(b) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003,
125, 11818. (c) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc.
1984, 106, 4630. (d) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby,
P.-O.; Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349. (e) Munday,
R. H.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130,
2754. (f) Zhang, L.; Wu, J. J. Am. Chem. Soc. 2008, 130, 12250. (g) So,
C. M.; Zhou, Z.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008,
47, 6402.
r
10.1021/ol303130j
Published on Web 12/17/2012
2012 American Chemical Society