S. Itagaki et al. / Journal of Molecular Catalysis A: Chemical 366 (2013) 347–352
351
O
O
O
value-added products. The reaction of the silyl formate with amines
(including aniline) produced the corresponding formamides and
formic acid. Water and the Grignard reagent could also be utilized
as nucleophilic reagents to react with the silyl formate, produc-
ing formic acid and the corresponding secondary alcohol (via an
aldehyde), respectively.
PhMe2SiOH
PhMe2Si
+
+
+
RR’NH
O
O
H
H
RR'N
H
5
2a
4
O
PhMe2SiOH
+
(PhMe2Si)2O
3a
PhMe2Si
2a
HO
H
Acknowledgment
Scheme 2. The reaction of 2a with amines to produce formamides and formic acid.
This work was supported in part by Grants-in-Aid for Scientific
Researches from Ministry of Education, Culture, Sports, Science and
Technology.
O
O
water
PhMe2Si
PhMe2SiH
+
CO2
O
H
1 atm
Appendix A. Supplementary data
1a
2a
90% yield
Supplementary data associated with this article can be
Scheme 3. Synthesis of formic acid from 1a, CO2, and water. After the hydrosily-
lation of CO2 with 1a under the conditions described in Table 1 was completed,
water (5 mmol) was added to the reaction solution, and then the mixture was
stirred at room temperature for 0.5 h. Consequently, 1a was mainly converted into
dimethylphenylsilanol (77% yield based on 1a).
References
[1] M. Aresta, A. Dibenedetto, Dalton Trans. (2007) 2975–2992.
[2] K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, ChemSusChem 1 (2008) 893–899.
[3] S.N. Riduan, Y. Zhang, Dalton Trans. 39 (2010) 3347–3357.
[4] E.A. Quadrelli, G. Centi, ChemSusChem 4 (2011) 1179–1181.
[5] D.J. Darensbourg, Chem. Rev. 107 (2007) 2388–2410.
[6] T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 107 (2007) 2365–2387.
[7] T. Sakakura, K. Kohno, Chem. Commun. (2009) 1312–1330.
[8] K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 40 (2011) 2435–2452.
[9] P.G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 95 (1995) 259–272.
[10] P.G. Jessop, F. Joó, C.-C. Tai, Coord. Chem. Rev. 248 (2004) 2425–2442.
[11] G.A. Olah, A. Goeppert, G.K.S. Prakash, J. Org. Chem. 74 (2009) 487–498.
[12] B. Marciniec, Coord. Chem. Rev. 249 (2005) 2374–2390.
[13] D. Addis, S. Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 50 (2011) 6004–6011.
[14] H. Koinuma, F. Kawakami, H. Kato, H. Hirai, J. Chem. Soc., Chem. Commun.
(1981) 213–214.
O
OH
Ph
77% yield
PhMgBr
PhMe2Si
PhMe2SiH
+
CO2
O
H
Ph
1 atm
1a
2a
Scheme 4. Synthesis of benzhydrol from 1a, CO2, and PhMgBr. After the hydrosily-
lation of CO2 with 1a under the conditions described in Table 1 was completed, the
solvent was removed by evaporation, followed by the addition of THF (1 mL). Then,
the THF solution of PhMgBr (1.10 M, 2 mL) was added to the reaction mixture and
stirred at room temperature for 1 h. Consequently, 1a was mainly converted into
dimethylphenylsilanol (84% yield based on 1a).
[15] G. Süss-Fink, J. Reiner, J. Organomet. Chem. 221 (1981) C36–C38.
[16] P.G. Jessop, Top. Catal. 5 (1998) 95–103.
[17] A. Jansen, H. Görls, S. Pitter, Organometallics 19 (2000) 135–138.
[18] A. Jansen, S. Pitter, J. Mol. Catal. A 217 (2004) 41–45.
[19] P. Deglmann, E. Ember, P. Hofmann, S. Pitter, O. Walter, Chem. Eur. J. 13 (2007)
2864–2879.
[20] R. Lalrempuia, M. Iglesias, V. Polo, P.J.S. Miguel, F.J. Fernández-
Alvarez, J.J. Pérez-Torrente, L.A. Oro, Angew. Chem. Int. Ed. (2012),
[21] W. Sattler, G. Parkin, J. Am. Chem. Soc. 134 (2012) 17462–17465.
[22] P. Arya, J. Boyer, R.J.P. Corriu, G.F. Lanneau, M. Perrot, J. Organomet. Chem. 346
(1988) C11–C14.
[23] T.C. Eisenschmid, R. Eisenberg, Organometallics 8 (1989) 1822–1824.
[24] S.N. Riduan, Y. Zhang, J.Y. Ying, Angew. Chem. Int. Ed. 48 (2009) 3322–3325.
[25] F. Huang, G. Lu, L. Zhao, H. Li, Z.-X. Wang, J. Am. Chem. Soc. 132 (2010)
12388–12396.
[26] T. Matsuo, H. Kawaguchi, J. Am. Chem. Soc. 128 (2006) 12362–12363.
[27] A. Berkefeld, W.E. Piers, M. Parvez, J. Am. Chem. Soc. 132 (2010) 10660–10661.
[28] C.D.N. Gomes, O. Jacquet, C. Viliers, P. Thuéry, M. Ephritikhine, T. Cantat, Angew.
Chem. Int. Ed. 51 (2012) 187–190.
[29] O. Jacquet, C.D.N. Gomes, M. Ephritikhine, T. Cantat, J. Am. Chem. Soc. 134 (2012)
1937–2934.
[30] S. Schreiner, J.Y. Yu, L. Vaska, J. Chem. Soc., Chem. Commun. (1988) 602–603.
[31] P.G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 116 (1994)
8851–8852.
[32] L. Schmid, M. Rohr, A. Baiker, Chem. Commun. (1999) 2303–2304.
[33] Y. Kayaki, T. Suzuki, T. Ikariya, Chem. Lett. 30 (2001) 1016–1017.
[34] F. Liu, M.B. Abrams, R.T. Baker, W. Tumas, Chem. Commun. (2001) 433–434.
[35] M. Minato, D.-Y. Zhou, K. Sumiura, R. Hirabayashi, Y. Yamaguchi, T. Ito, Chem.
Commun. (2001) 2654–2655.
into N,N-disubstituted formamide derivatives (Table 6, entries
1–3). An aliphatic primary amine (4d) also gave the corresponding
N-alkyl formamide (Table 6, entry 4). In the case of primary ben-
significant, and the formylation efficiently proceeded, giving the
in comparison with common amines (1–4 h) (Table 6, entry 8).
Besides amines and aniline, water could act as a nucleophile
[41,42]; the addition of water to the solution containing 2a yielded
Grignard reagent produced the corresponding secondary alcohol,
while the Grignard reaction of CO2 generally produces the cor-
responding carboxylic acid. When the reaction of 2a with two
equivalents of the Grignard reagent of PhMgBr was carried out, ben-
zhydrol was obtained in 77% yield (Scheme 4). In this case, a silyl
formate 2a would also act as a formyl synthon to form benzalde-
hyde, and then the successive addition of PhMgBr to benzaldehyde
proceeds to give benzhydrol as a final product.
[36] P. Munshi, D.J. Heldebrant, E.P. McKoon, P.A. Kelly, C.-C. Tai, P.G. Jessop, Tetra-
hedron Lett. 44 (2003) 2725–2727.
4. Conclusion
[37] Y. Kayaki, Y. Shimokawatoko, T. Ikariya, Adv. Synth. Catal. 345 (2003) 175–179.
[38] D.J. Heldebrant, H.N. Witt, S.M. Walsh, T. Ellis, J. Rauscher, P.G. Jessop, Green
Chem. 8 (2006) 807–815.
[39] C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P.J. Dyson, R. Scopelliti, G.
Laurenczy, M. Beller, Angew. Chem. Int. Ed. 49 (2010) 9777–9780.
[40] J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan, B. Han, Chem. Commun.
46 (2010) 5770–5772.
[41] A. Schäfer, W. Saak, D. Haase, T. Müller, Angew. Chem. Int. Ed. 51 (2012)
2981–2984.
[42] K. Motokura, D. Kashiwame, A. Miyaji, T. Baba, Org. Lett. 14 (2012) 2642–2645.
In summary, we reported herein two important and interesting
findings of the efficient hydrosilylation of CO2 and the utilization of
silyl formates. A simple combination of Rh2(OAc)4 and inorganic O-
donor bases efficiently promoted hydrosilylation of CO2 under mild
conditions (1 atm, 50–70 ◦C). Various kinds of hydrosilanes could be
utilized for the present hydrosilylation. The silyl formate produced
through the hydrosilylation of CO2 could be utilized for synthesis of