ChemComm
Communication
designing fluorescent probes, and provided a tool for further
investigation of relevant biological processes in thiols and ROS.
This work was supported by NSFC (No. 21273234 and
21203192) and the National Basic Research Program of China
(2013CB834604).
Notes and references
1 C. T. Dooley, T. M. Dore, G. T. Hanson, W. C. Jackson, S. J. Remington
and R. Y. Tsien, J. Biol. Chem., 2004, 279, 22284–22293.
2 X. Chen, Y. Zhou, X. Peng and J. Yoon, Chem. Soc. Rev., 2010, 39,
2120–2135.
3 (a) T. Finkel and N. J. Holbrook, Nature, 2000, 408, 239–247;
(b) D. P. Jones, Antioxid. Redox Signaling, 2006, 8, 1865–1879.
4 D. A. Geier, J. K. Kern, C. R. Garver, J. B. Adams, T. Audhya, R. Nataf
and M. R. Geier, J. Neurol. Sci., 2009, 280, 101–108.
5 P. S. Samiec, C. Drews-Botsch, E. W. Flagg, J. C. Kurtz, P. Sternberg Jr,
R. L. Reed and D. P. Jones, Free Radical Biol. Med., 1998, 24, 699–704.
6 J. H. Limon-Pacheco and M. E. Gonsebatt, Cent. Nerv. Syst. Agents
Med. Chem., 2010, 10, 287–297.
7 C. A. Lang, B. J. Mills, W. Mastropaolo and M. C. Liu, J. Lab. Clin.
Med., 2000, 135, 402–405.
8 E. S. Christians and I. J. Benjamin, Am. J. Physiol., 2012, 302, H24–H37.
9 N. S. Rajasekaran, S. Varadharaj, G. D. Khanderao, C. J. Davidson,
S. Kannan, M. A. Firpo, J. L. Zweier and I. J. Benjamin, Antioxid.
Redox Signaling, 2011, 14, 957–971.
10 H. Zhang, P. Limphong, J. Pieper, Q. Liu, C. K. Rodesch,
E. Christians and I. J. Benjamin, FASEB J., 2012, 26, 1442–1451.
11 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97,
1515–1566.
Fig. 3 Confocal fluorescence images of the changes in thiol concentration and
redox changes in living HeLa cells. (a) Incubated with 15 mM FSeSeF.
(b) Preincubated with 15 mM N-ethylmaleimide for 2 h and treated with FSeSeF.
(c) Preincubated with 500 mM a-lipoic acid for 1 day before being treated with
FSeSeF. (d) Incubated FSeSeF. (e) FSeSeF-loaded cells treated with 1 mM H2O2 for
20 min. (f) FSeSeF-loaded, H2O2-treated cells for treatment with 1 mM a-lipoic
acid for 40 min. (g) Fluorescence image with a Hoechst 33342 dye filter set.
(h) FSeSeF set (excitation = 488 nm, emission = 495–550 nm). (i) Overlay of the
two sets of images. Scale bar represents 20 mm.
12 Selected examples of thiols probes: (a) L. Yi, H. Li, L. Sun, L. Liu,
C. Zhang and Z. Xi, Angew. Chem., Int. Ed., 2009, 48, 4034–4037;
(b) H. Li, J. Fan, J. Wang, M. Tian, J. Du, S. Sun, P. Sun and X. Peng,
Chem. Commun., 2009, 5904–5906; (c) H. Maeda, H. Matsuno,
M. Ushida, K. Katayama, K. Saeki and N. Itoh, Angew. Chem., Int.
Ed., 2005, 44, 2922–2925; (d) C. S. Lim, G. Masanta, H. J. Kim,
J. H. Han, H. M. Kim and B. R. Cho, J. Am. Chem. Soc., 2011, 133,
11132–11135.
to 100 mM for 24 h showed IC50 = 76 mM. This result indicated that
the fluorescent probe was of low toxicity to cultured cell lines
under the experimental conditions. Taken together, these findings
demonstrated that FSeSeF was capable of detecting thiols selec-
tively, and furthermore, responding to a decrease and an increase
in thiol concentration in living cells.
13 E. W. Miller, S. X. Bian and C. J. Chang, J. Am. Chem. Soc., 2007, 129,
3458–3459.
14 G. T. Hanson, R. Aggeler, D. Oglesbee, M. Cannon, R. A. Capaldi,
R. Y. Tsien and S. J. Remington, J. Biol. Chem., 2004, 279, 13044–13053.
15 Selected examples of redox probes: F. Yu, P. Li, G. Li, G. Zhao,
T. Chu and K. Han, J. Am. Chem. Soc., 2011, 133, 11030–11033.
16 K. P. Bhabak and G. Mugesh, Acc. Chem. Res., 2010, 43, 1408–1419.
17 (a) V. Nascimento, E. E. Alberto, D. W. Tondo, D. Dambrowski,
M. R. Detty, F. Nome and A. L. Braga, J. Am. Chem. Soc., 2012, 134,
138–141; (b) G. Mugesh, W.-W. du Mont and H. Sies, Chem. Rev.,
2001, 101, 2125–2180.
18 (a) D. Steinmann, T. Nauser and W. H. Koppenol, J. Org. Chem.,
2010, 75, 6696–6699; (b) S. M. Bachrach, D. W. Demoin, M. Luk and
J. V. Miller, J. Phys. Chem. A, 2004, 108, 4040–4046.
19 B. K. Sarma and G. Mugesh, Chem.–Eur. J., 2008, 14, 10603–10614.
20 (a) K. K. Rohatgi and A. K. Mukhopadhyay, J. Phys. Chem., 1972, 76,
3970–3973; (b) W. Rhodes, J. Am. Chem. Soc., 1961, 83, 3609–3617;
(c) O. Valdes-Aguilera and D. C. Neckers, Acc. Chem. Res., 1989, 22,
171–177.
21 X. Zhuang, T. Ha, H. D. Kim, T. Centner, S. Labeit and S. Chu, Proc.
Natl. Acad. Sci. U. S. A., 2000, 97, 14241–14244.
22 M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, Anal. Chem.,
1996, 68, 1414–1418.
23 G. M. Whitesides, J. E. Lilburn and R. P. Szajewski, J. Org. Chem.,
1977, 42, 332–338.
24 Y. Qian, J. Karpus, O. Kabil, S.-Y. Zhang, H.-L. Zhu, R. Banerjee,
J. Zhao and C. He, Nat. Commun., 2011, 2, 495–502.
25 C. R. Yellaturu, M. Bhanoori, I. Neeli and G. N. Rao, J. Biol. Chem.,
2002, 277, 40148–40155.
To investigate whether FSeSeF was responsive to the redox
changes mediated by thiols and ROS in vivo, we performed reversi-
bility measurement of the probe in HeLa cells. Treating the same
FSeSeF-incubated cells with H2O2 resulted in decreased cellular
fluorescence intensity (Fig. 3e). Moreover, to rule out that the weak
intracellular fluorescence compared with that shown in Fig. 3d was
not due to photobleaching or loss of fluorescent probes, we added a-
lipoic acid into the culture solution of HeLa cells and found
increased intracellular fluorescence (Fig. 3f). Taken together, these
results suggest that FSeSeF can be developed as a fluorescence probe
for the redox changes mediated by thiols and ROS in living cells. We
next sought to investigate the intracellular localization of FSeSeF in
HeLa cells using Hoechst 33342 to label the nucleus,27 which
demonstrated that the fluorophore was capable of penetrating the
nuclear membranes and dispersing in the whole cell (Fig. 3g–i).
In summary, we had successfully designed and synthesized a
diselenide-containing fluorescent probe (FSeSeF) for detecting
thiols and the redox changes mediated by thiols and ROS both
in aqueous medium and living cells. The fluorescent probe for
thiols exhibited several advantages, including high selectivity and
speedy response. Furthermore, FSeSeF could respond to the redox
changes mediated by thiols and ROS both in aqueous medium
and living cells. This work highlighted a promising strategy for
26 B. Hultberg, A. Andersson and A. Isaksson, Toxicology, 2002, 175,
103–110.
27 M. E. Lalande, V. Ling and R. G. Miller, Proc. Natl. Acad. Sci. U. S. A.,
1981, 78, 363–367.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 391--393 393