22
I. N. Bardasov et al. / Tetrahedron Letters 54 (2013) 21–22
NH2
NH2
NH2
N
NH2
NC
Ar
CN
Hal
NC
CN
Hal
NC
Ar
CN
Hal
NC
Ar
CN +HHal
[O]
CN
N
2
Ar HN
1
Scheme 2. Proposed mechanism for the synthesis of pyridines 2a–j.
3388 cmÀ1. The 1H NMR spectra of products 2a–j exhibited singlets
at 8.10–8.37 ppm for the amino group and resonances expected for
the aryl group and other substituents. The 13C NMR spectra of 2b
and 2f exhibited signals due to the carbon atoms of the benzene
ring, and the cyano groups at 113.19–114.89 ppm, and signals for
the pyridine ring at 91.74–92.02 ppm (C-3, C-5) and 147.65–
163.69 ppm (C-2, C-4 and C-6). The mass spectra of compounds
2a–j displayed molecular ion peaks and other fragmentations,
including peaks due to [MÀHal]+ fragments.
Thierrichter, B.; Wibmer, P. Monatsh. Chem. 1979, 110, 483–492; (e) Junek, H.;
Wolny, B. Monatsh. Chem. 1976, 107, 999–1006.
5. Typical procedure for the preparation of 4-amino-6-aryl-2-chloropyridine-3,5-
dicarbonitriles 2a–e:
A
solution of 2-amino-4-arylbuta-1,3-diene-1,1,3-
tricarbonitrile (1) (2.20 g, 10 mmol), SeO2 (1.2 g, 11 mmol) and concentrated
HCl (2 mL) in 1,4-dioxane (70 mL) was stirred at 70 °C for 6–8 h (TLC). After
neutralization with sat NaHCO3 solution, the resulting precipitate was filtered
and washed with 1,4-dioxane and H2O (40 mL) and, then recrystallized from
1,4-dioxane. Compound 2a: mp 247–249 °C; 1H NMR (500.13 MHz, DMSO-d6): d
7.54–7.61 (3H, m, C6H5), 7.79 (2H, d, J = 7.4 Hz, C6H5), 8.20 (2H, s, NH2). IR 3373,
3360, 3242 (NH2), 2234 (C„N). MS (EI, 70 eV): m/z (%) 256 [M+
[M+
(
37Cl), 16], 254
(
35Cl), 100), 219 ([C13H7N4]+, 38). Anal. Calcd for C13H7ClN4: C, 61.31; H,
The reaction apparently involves nucleophilic addition of the
halide to the electrophilic carbon atom of the cyano group in the
first stage Scheme 2. Subsequent cyclization of the imine on to
the spatially contiguous electrophilic carbon atom leads to forma-
tion of the dihydropyridine ring. Aromatization under the action of
an oxidizing agent completes the reaction.
2.77; N, 22.00. Found C, 61.42; H, 2.72; N, 21.94. Compound 2b: mp 237–239 °C;
1H NMR (500.13 MHz, DMSO-d6): d 7.59 (1H, t, J = 7.9 Hz, C6H4), 7.67 (1H, ddd,
3J = 8.0 Hz, 4J = 2.1 Hz, 4J = 1.0 Hz, C6H4), 7.76 (1H, dt, 3J = 7.8 Hz, 4J = 1.3 Hz,
C6H4), 7.81 (1H, t, J = 1.9 Hz, C6H4), 8.28 (2H, s, NH2). 13C NMR (125.76 MHz,
DMSO-d6): d 91.87, 92.02 (C-3, C-5), 113.19, 114.52 (CN), 127.61, 128.57, 130.53,
130.88, 133.21, 137.90 (C6H4), 155.35, 158.72, 162.22 (C-2, C-4, C-6). IR 3368,
3346, 3244 (NH2), 2233 (C„N). MS (EI, 70 eV): m/z (%) 290 [M+
[M+
54.07; H, 2.02; N, 19.39. Compound 2c: mp 264–266 °C; 1H NMR (500.13 MHz,
DMSO-d6): 2.40 (3H, s, CH3), 7.36 (2H, d, J = 8.1 Hz, C6H4), 7.71 (2H, d,
J = 8.2 Hz, C6H4), 8.16 (2H, s, NH2). IR 3387, 3338, 3237 (NH2), 2227 (C„N). MS
(EI, 70 eV): m/z (%) 270 [M+ 37Cl), 34], 268 [M+ 35Cl), 100]. Anal. Calcd for
(
37Cl), 70], 288
(
35Cl), 100]. Anal. Calcd for C13H6Cl2N4: C, 54.01; H, 2.09; N, 19.38. Found C,
In the absence of an oxidant, even after many days of heating at
reflux, only the parent compounds 1a–j remained in the reaction
mixture. This can be explained by the fact that the halide anion
addition and the formation of the dihydropyridine are likely to
be reversible, and their direction is strongly shifted toward the for-
mation of the parent compounds. The introduction of the oxidant
leads to irreversible aromatization and releases the final pyridines
2a–j. As oxidants we used tetracyanoethylene, potassium perman-
ganate, aerial oxygen, bromine, and selenium dioxide. The best re-
sults were obtained with selenium dioxide for compounds 2a–j
and bromine for compounds 2a–j.
In conclusion, functionally substituted 4-amino-2-halopyri-
dines are known to be precursors of pharmacologically active com-
pounds,7 and therefore our goal is further modification of the
substituents on the pyridine ring and the study of the biological
activity of these products.
d
(
(
C
14H9ClN4: C, 62.58; H, 3.38; N, 20.85. Found C, 62.68; H, 3.36; N, 20.89.
Compound 2d: mp 285–287 °C; 1H NMR (500.13 MHz, DMSO-d6): d 7.38–7.42
(2H, m, C6H4), 7.85–7.90 (2H, m, C6H4), 8.23 (2H, s, NH2). IR 3375, 3244 (NH2),
2232 (C„N). MS (EI, 70 eV): m/z (%) 274 [M+ 37Cl), 31], 272 [M+ 35Cl), 100], 237
( (
([C13H6FN4]+, 29). Anal. Calcd for C13H6ClFN4: C, 57.26; H, 2.22; N, 20.55. Found
57.36; H, 2.23; N, 20.44. Compound 2e: mp 206–208 °C; 1H NMR (500.13 MHz,
DMSO-d6): d 7.50–7.59 (3H, m, C6H4), 7.64 (1H, dd, 3J = 8.0 Hz, 4J = 0.9 Hz, C6H4),
8.37 (2H, s, NH2). IR 3369, 3233 (NH2), 2225 (C„N). MS (EI, 70 eV): m/z (%) 290
[M+ 37Cl), 66], 288 [M+ 35Cl), 100], 253 ([C13H6ClN4]+, 87). Anal. Calcd for
( (
C
13H6Cl2N4: C, 54.01; H, 2.09; N, 19.38. Found C, 54.13; H, 2.07; N, 19.28.
6. Typical procedure for the preparation of 4-amino-6-aryl-2-bromopyridine-3,5-
dicarbonitriles 2f–j: solution of 2-amino-4-arylbuta-1,3-diene-1,1,3-
A
tricarbonitrile (1) (2.20 g, 10 mmol), Br2 (0.88 g, 11 mmol) and concentrated
HBr (2 mL) in 1,4-dioxane (70 mL) was stirred at 70 °C for 6–8 h (TLC). After
neutralization with sat NaHCO3 solution, the resulting precipitate was filtered
and washed with 1,4-dioxane and H2O (40 mL) and, then recrystallized from
1,4-dioxane. Compound 2f: mp 285–286 °C; 1H NMR (500.13 MHz, DMSO-d6): d
7.54–7.61 (3H, m, C6H5), 7.79 (2H, d, J = 7.0 Hz, C6H5), 8.14 (2H, s, NH2). 13C NMR
(125.76 MHz, DMSO-d6): d 91.74, 94.72 (C-3, C-5), 114.57, 114.89 (CN), 128.54,
128.92, 131.12, 135.92 (C6H4), 147.65, 158.40, 163.69 (C-2, C-4, C-6). IR 3375,
Supplementary data
3344, 3245 (NH2), 2230 (C„N). MS (EI, 70 eV): m/z (%) 300 [M+
(
81Br), 12], 298
Supplementary data associated with this article can be found, in
015. These data include MOL files and InChiKeys of the most
important compounds described in this article.
[M+ 79Br), 11], 219 ([C13H7N4]+, 100). Anal. Calcd for C13H7BrN4: C, 52.20; H,
(
2.36; N, 18.73. Found C, 52.30; H, 2.23; N, 18.76. Compound 2g: mp 252–253 °C;
1H NMR (500.13 MHz, DMSO-d6): d 7.59 (1H, t, J = 7.9 Hz, C6H4,), 7.67 (1H, ddd,
C6H4, 3J = 8.1 Hz, 4J = 2.1 Hz, 4J = 1.0 Hz), 7.75 (1H, dt, 3J = 7.7 Hz, 4J = 1.4 Hz,
C6H4), 7.80 (1H, t, J = 1.9 Hz, C6H4), 8.22 (2H, s, NH2). IR 3367, 3319, 3231 (NH2),
2215, 2237 (C„N). MS (EI, 70 eV): m/z (%) 334 [M+ 81Br), 2], 332 [M+ 79Br), 6],
( (
253 ([C13H6ClN4]+, 56). Anal. Calcd for C13H6BrClN4: C, 46.81; H, 1.81; N, 16.80.
Found C, 46.71; H, 1.90; N, 16.81. Compound 2h: mp 289–291 °C; 1H NMR
(500.13 MHz, DMSO-d6): d 2.40 (3H, s, CH3), 7.36 (2H, d, J = 8.1 Hz, C6H4), 7.70
(2H, d, J = 8.1 Hz, C6H4), 8.10 (2H, s, NH2). IR 3388, 3341, 3238 (NH2), 2228
References and notes
1. (a) Palmer, A. M.; Münch, G.; Brehm, C.; Zimmermann, P. J.; Buhr, W.; Feth, M. P.;
Simon, W. A. Bioorg. Med. Chem. 2008, 16, 1511–1530; (b) Searls, T.; McLaughlin,
L. W. Tetrahedron 1999, 55, 11985–11996; (c) Wozniak, M.; Baranski, A.;
Szpakiewicz, B. Liebigs Ann. Chem. 1991, 875–878.
2. (a) Mittelbach, M.; Junek, H. Liebigs Ann. Chem. 1986, 533–544; (b) Little, E. L., Jr.;
Middleton, W. J.; Coffman, D. D.; Engelhardt, V. A.; Sausen, G. N. J. Am. Chem. Soc.
1958, 80, 2832–2838; (c) Mascal, M.; Hext, N. M.; Warmuth, R.; Arnall-Culliford,
J. R.; Moore, M. H.; Turkenburg, J. P. J. Org. Chem. 1999, 64, 8479–8484; (d)
Mittelbach, M. Monatsh. Chem. 1987, 118, 617–626; (e) Carboni, R. A.; Coffman,
D. D.; Howard, E. G. J. Am. Chem. Soc. 1958, 80, 2838–2840.
3. (a) Bardasov, I. N.; Golubev, R. V.; Ershov, O. V.; Kayukov, Ya. S.; Nasakin, O. E.
Tetrahedron Lett. 2011, 52, 4724–4725; (b) Belikov, M. Yu.; Ershov, O. V.;
Eremkin, A. V.; Nasakin, O. E.; Tafeenko, V. A.; Nurieva, E. V. Tetrahedron Lett.
2011, 52, 6407–6410; (c) Eremkin, A. V.; Molkov, S. N.; Ershov, O. V.; Kayukov,
Ya. S.; Nasakin, O. E.; Tafeenko, V. A.; Nurieva, E. V. Mendeleev Commun. 2006, 16,
115–116; (d) Eremkin, A. V.; Ershov, O. V.; Kayukov, Ya. S.; Sheverdov, V. P.;
Nasakin, O. E.; Tafeenko, V. A.; Nurieva, E. V. Tetrahedron Lett. 2006, 47, 1445–
1447.
(C„N). MS (EI, 70 eV): m/z (%) 314 [M+ 81Br), 13], 312 [M+ 79Br), 19], 233
( (
([C14H9N4]+, 100). Anal. Calcd for C14H9BrN4: C, 53.70; H, 2.90; N, 17.89. Found C,
53.63; H, 2.90; N, 17.93. Compound 2i: mp 281–281 °C; 1H NMR (500.13 MHz,
DMSO-d6): d 7.38–7.42 (2H, m, C6H4), 7.86–7.89 (2H, m, C6H4), 8.18 (2H, s, NH2).
IR 3371, 3349, 3240 (NH2), 2230 (C„N). MS (EI, 70 eV): m/z (%) 318 [M+ 81Br),
(
95], 316 [M+ 79Br), 100], 237 ([C13H6FN4]+, 95). Anal. Calcd for C13H6BrFN4: C,
(
49.24; H, 1.91; N, 17.67. Found C, 49.34; H, 1.92; N, 17.56. Compound 2j: mp
208–210 °C; 1H NMR (500.13 MHz, DMSO-d6): d 7.49–7.59 (2H, m, C6H4), 7.64
(2H, dd, 3J = 8.0,4J = 0.8, C6H4), 8.31 (2H, s, NH2). IR 3378, 3216 (NH2), 2222
(C„N). MS (EI, 70 eV): m/z (%) 334 [M+ 81Br), 6), 332 [M+ 79Br), 1), 253
( (
([C13H6ClN4]+, 24). Anal. Calcd for C13H6BrClN4: C, 46.81; H, 1.8; N, 16.80. Found:
C, 46.71; H, 1.92; N, 16.78.
7. (a) Zhao, H.; Serby, M. D.; Xin, Z.; Szczepankiewicz, B. G.; Liu, M.; Kosogof, Ch.;
Liu, B.; Nelson, L. T. J.; Johnson, E. F.; Wang, S.; Pederson, T.; Gum, R. J.; Clampit, J.
E.; Haasch, D. L.; Abad-Zapatero, C.; Fry, E. H.; Rondinone, C.; Trevillyan, J. M.;
Sham, H. L.; Liu, G. J. Med. Chem. 2006, 49, 4455–4458; (b) Liu, G.; Zhao, H.; Liu,
B.; Xin, Zh.; Liu, M.; Kosogof, Ch.; Szczepankiewicz, B. G.; Wang, S.; Clampit, J. E.;
Gum, R. J.; Haasch, D. L.; Trevillyan, J. M.; Sham, H. L. Bioorg. Med. Chem. Lett.
2006, 16, 5723–5730.
4. (a) Gazit, A.; Yaish, P.; Gilon, C.; Levitzki, A. J. Med. Chem. 1989, 32, 2344–2352;
(b) Boila-Goeckel, A.; Junek, H. J. Prakt. Chem. 1999, 341, 20–28; (c) Fahmy, S. M.;
Abd Allah, S. O.; Mohareb, R. M. Synthesis 1984, 976–978; (d) Junek, H.;