Job/Unit: O21051
/KAP1
Date: 27-09-12 10:29:44
Pages: 8
A. Caballero, P. J. Campos, M. A. Rodríguez
FULL PAPER
U. Scherf (Eds.), Organic Light Emitting Devices: Synthesis
Properties and Applications, Wiley-VCH, Weinheim, 2006; d)
L. Barsanti, V. Evangelista, P. Gualtieri, V. Passarelli, S. Vestri
(Eds.), Molecular Electronics: Bio-Sensors and Bio-Computers
NATO Science Series II: Mathematics, Physics, Chemistry, vol.
96, Plenum Press, New York, 2003; e) K. Mullen, G. Wegner
(Eds.), Electronic Materials: The Oligomer Approach, Wiley-
VCH, Weinheim, Germany, 1998.
See, for example: a) D. T. Chae, A. G. Fix, B. D. Rose, C. D.
Weber, S. Nobusue, C. E. Stockwell, L. N. Zakharov, M. C.
Lonergan, M. M. Haley, Angew. Chem. Int. Ed. 2011, 50,
11103; b) D. T. Chase, B. S. Young, M. M. Haley, J. Org. Chem.
2011, 76, 4043; c) C. B. Nielsen, T. Brock-Nannestad, T. K. Re-
enberg, P. Hammershøj, J. B. Christensen, J. W. Stouwdam, M.
Pittelkow, Chem. Eur. J. 2010, 16, 13030; d) C.-S. Li, Y.-H. Tsai,
W.-C. Lee, W.-J. Kuo, J. Org. Chem. 2010, 75, 4004.
Conclusions
We have prepared a series of diaryltrisphaeridines by
iodination of trisphaeridine and subsequent Suzuki cou-
pling reaction. These compounds were investigated by pho-
tophysical and electrochemical methods. The properties of
the materials depend on the aryl substituent. In particular,
the presence of dimethylamino moieties induces a bright-
green emission, which makes this a promising compound
for use in fluorescence devices and molecular sensors.
Moreover, the green emission disappears on addition of
HCl and this material can therefore also be used as a proton
sensor. The results have been rationalized by DFT and TD-
DFT theoretical studies.
[2]
[3]
[4]
R. Alonso, A. Caballero, P. J. Campos, M. A. Rodríguez, Tetra-
hedron 2010, 66, 8828.
a) R. Alonso, P. J. Campos, M. A. Rodríguez, D. Sampedro, J.
Org. Chem. 2008, 73, 2234; b) R. Alonso, P. J. Campos, B.
García, M. A. Rodríguez, Org. Lett. 2006, 8, 3521.
Experimental Section
[5]
a) Z. Jin, Nat. Prod. Rep. 2011, 28, 1126, and references cited
therein; b) J. Marco-Contelles, M. C. Carreiras, C. Rodríguez,
M. Villarroya, A. G. García, Chem. Rev. 2006, 106, 116; c)
E. E. Elgorashi, G. I. Stafford, J. Van Staden, Plant Methods
2004, 70, 260; d) B. Sener, I. Orhan, J. Satayavivad, Phytother.
Res. 2003, 17, 1220; e) S. Amos, L. Binda, P. Akah, C. Wam-
bebe, K. Gamaniel, Fitoterapia 2003, 74, 23; f) G. Schmeda-
Hirschmann, J. A. Rodríguez, J. I. Loyola, L. Astudillo, J. Bas-
tida, F. Viladomat, C. Codina, Pharm. Pharmacol. Commun.
2000, 6, 309; g) M. Tanker, G. Citoglu, B. Gumusel, B. Sener,
Int. J. Pharmacogn. 1996, 34, 194; h) B. Gabrielsen, T. P. Mon-
ath, J. W. Huggins, D. F. Fefauver, G. R. Pettit, G. Groszek, M.
Hollingshead, J. J. Kirsi, W. M. Shannon, E. M. Schubert, J.
Dare, B. Ugarkar, M. A. Ussery, M. J. Phelan, J. Nat. Prod.
1992, 55, 1569.
7,11-Diiodo[1,3]dioxolo[4,5-j]phenanthridine (2): Bis(pyridine)-
iodonium(I) tetrafluoroborate (Ipy2BF4; 17 mmol, 6.5 g) was dis-
solved in dry CH2Cl2 (50 mL) in an oven-dried flask at room tem-
perature under argon. Trisphaeridine (1; 4.4 mmol, 0.9 g) was dis-
solved in dry CH2Cl2 in another flask under argon and this solu-
tion was added to the Ipy2BF4 solution. A solution of CF3SO3H
(35 mmol, 3.1 mL) in CH2Cl2 (5 mL) was added over a period of
3 min to the magnetically stirred mixture. Finally, the reaction mix-
ture was stirred overnight at room temperature. The reaction was
treated with aqueous sodium thiosulfate, extracted with CH2Cl2,
washed with brine, and dried (Na2SO4). The solvent was removed
under reduced pressure, the residue was washed with chloroform,
and the resulting solid was filtered off to give compound 2 as a
brown solid.
[6]
[7]
I. Zupkó, B. Réthy, J. Hohmann, J. Molnár, I. Ocsovszki, G.
Falkay, in vivo 2009, 23, 41.
a) P. J. Campos, B. García, M. A. Rodríguez, Tetrahedron Lett.
2002, 43, 6111; b) P. J. Campos, B. García, M. A. Rodríguez,
Tetrahedron Lett. 2000, 41, 979; c) P. J. Campos, J. Arranz,
M. A. Rodríguez, Tetrahedron Lett. 1997, 38, 8397; d) P. J.
Campos, C.-Q. Tan, M. A. Rodríguez, Tetrahedron Lett. 1995,
36, 5257; e) J. Barluenga, J. M. González, M. A. García-
Martín, P. J. Campos, G. Asensio, J. Org. Chem. 1993, 58, 2058;
f) J. Barluenga, M. A. Rodríguez, P. J. Campos, J. Org. Chem.
1990, 55, 3104; g) J. Barluenga, M. A. Rodríguez, P. J. Campos,
G. Asensio, J. Am. Chem. Soc. 1988, 110, 5567.
General Procedure for the Preparation of Diaryltrisphaeridines: The
diiodinated trisphaeridine 2 (0.2 mmol, 0.1 g) and tetrakis(triphen-
ylphosphane)palladium(0) (0.05 mmol, 50 mg) were dissolved in
1,2-dimethoxyethane (50 mL) and the mixture was stirred for
20 min at room temperature. A solution of potassium carbonate
(0.7 mmol, 0.1 g) and phenylboronic acid (0.9 mmol, 0.1 g) in water
(8 mL) was then added and the resulting mixture was heated at
92 °C for 3–7 d. The mixture was extracted with diethyl ether (3ϫ
50 mL) and the organic layers were dried (Na2SO4), filtered, and
evaporated under reduced pressure. The resulting diaryltrisphaerid-
ine was purified by column chromatography (silica gel, hexane/
EtOAc, 7:3). The coupling reaction should be repeated twice for
the complete conversion of 2 into diaryltrisphaeridines 5–8.
[8]
a) K. Sonogashira, J. Organomet. Chem. 2002, 653, 46; b) J. A.
Hur, S. Y. Bae, K. H. Kim, T. W. Wan, M. J. Cho, D. H. Choi,
Org. Lett. 2011, 13, 1948.
[9]
[10]
A. Suzuki, J. Organomet. Chem. 1999, 576, 147.
See, for example: P. Zanello, Inorganic Electrochemistry:
Theory, Practice and Application, Royal Society of Chemistry,
Cambridge, 2003.
All calculations were carried out by using the Gaussian 03 pro-
gram package. The geometry was fully optimized in the ground
state without any symmetry constraint for all model com-
pounds at the B3LYP/6-31G* level of theory. Subsequent cal-
culations of the orbitals were performed.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pom-
elli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Supporting Information (see footnote on the first page of this arti-
cle): Complete experimental procedures, characterization data for
new compounds, and Cartesian coordinates and single-excitation
calculations for the geometries discussed in the text.
[11]
[12]
Acknowledgments
This work was partially supported by the Spanish Ministerio de
Economía y Competitividad (grant number CTQ2011-24800).
A. C. thanks the (CSIC) for a fellowship.
[1] a) P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268;
b) T. J. J. Müller, U. H. F. Bunz (Eds.), Functional Organic Ma-
terials, Wiley-VCH, Weinheim, Germany, 2007; c) K. Mullen,
6
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0