Page 5 of 6
ACS Catalysis
E.; Bargsten, K.; Cavalli, A.; Steinmetz, M. O. Structural Basis of cisꢀ
Ed. 2017, 56, 1495ꢀ1499. (x) Chattopadhyay, B.; Dannatt, J. E.; Sancꢀ
tis, I. L. A.ꢀD.; Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith,
M. R. IrꢀCatalyzed orthoꢀBorylation of Phenols Directed by Subꢀ
strate−Ligand Electrostatic Interactions: A Combined Experimental/in
Silico Strategy for Optimizing Weak Interactions. J. Am. Chem. Soc.
2017, 139, 7864ꢀ7871. (y) Li, H.ꢀL.; Kanai, M.; Kuninobu, Y. Iridiꢀ
um/BipyridineꢀCatalyzed orthoꢀSelective C−H Borylation of Phenol
and Aniline Derivatives. Org. Lett. 2017, 19, 5944ꢀ5947.
(5) Oyamada, J.; Nishiura, M.; Hou, Z. ScandiumꢀCatalyzed Silylaꢀ
tion of Aromatic C–H Bonds. Angew. Chem., Int. Ed. 2011, 50,
10720ꢀ10723.
(6) (a) Oyamada, J.; Hou, Z. Regioselective C–H Alkylation of Anꢀ
isoles with Olefins Catalyzed by Cationic HalfꢀSandwich Rare Earth
Alkyl Complexes. Angew. Chem., Int. Ed. 2012, 51, 12828ꢀ12832. (b)
Shi, X.; Nishiura, M.; Hou, Z. C−H Polyaddition of Dimethoxyarenes
to Unconjugated Dienes by Rare Earth Catalysts. J. Am. Chem. Soc.
2016, 138, 6147ꢀ6150. (c) Shi, X.; Nishiura, M.; Hou, Z. Simultaneꢀ
ous ChainꢀGrowth and StepꢀGrowth Polymerization of Methoxystyꢀ
renes by RareꢀEarth Catalysts. Angew. Chem., Int. Ed. 2016, 55,
14812ꢀ14817.
(7) For formation of a zwitterion compound in the reaction of a lanꢀ
thanum metallocene hydride complex with HBpin, see: Dudnik, A. S.;
Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J. Atomꢀefficient
regioselective 1,2ꢀdearomatization of functionalized pyridines by an
earthꢀabundant organolanthanide catalyst. Nat. Chem. 2014, 6, 1100ꢀ
1107.
(8) The C–H borylation of thioanisole and N,Nꢀdimethylaniline
(without a methoxy group) was not observed under the same condiꢀ
tions.
(9) For alkene hydroboration with HBpin by lanthanide metalloꢀ
cene complexes, see: Harrison, K. N.; Marks, T. J. Organolanthanideꢀ
catalyzed hydroboration of olefins. J. Am. Chem. Soc. 1992, 114,
9220ꢀ9221.
(10) When 1.0 equiv. of HBpin was used, only the C=C hydroboraꢀ
tion was observed.
(11) The lack of activity of the C5Me4ꢀligated complex Y-3 for the
borylation of furan is probably due to the relative steric unsaturation
around the metal center, which could allow coordination of more than
one molecule of furan (which is less sterically demanding than aniꢀ
sole) and thus hamper the reaction of a metal furyl species with
HBpin. In the case of Y-2, the two sterically demanding C5Me5 ligꢀ
ands may prevent the coordination of excess furan molecules to the
metal center and thus allow the Y−furyl species to react with HBpin
and give the borylation product efficiently. The lower efficiency of
the sterically demanding complex Y-2 for the borylation of anisole
(see Table 1, entry 3) is probably due to the larger steric hindrance of
anisole than that of furan.
and transꢀCombretastatin Binding to Tubulin. Chem 2017, 2, 102ꢀ113.
(4) (a) Cho, J.ꢀY.; Iverson, C. N.; Smith, M. R. Steric and Chelate
Directing Effects in Aromatic Borylation. J. Am. Chem. Soc. 2000,
122, 12868ꢀ12869. (b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura,
N.; Anastasi, N. R.; Hartwig, J. F. Mild IridiumꢀCatalyzed Borylation
of Arenes. High Turnover Numbers, Room Temperature Reactions,
and Isolation of a Potential Intermediate. J. Am. Chem. Soc. 2002, 124,
390ꢀ391. (c) Chotana, G. A.; Rak, M. A.; Smith, M. R. Sterically
Directed Functionalization of Aromatic CꢀH Bonds: Selective Borylaꢀ
tion Ortho to Cyano Groups in Arenes and Heterocycles. J. Am. Chem.
Soc. 2005, 127, 10539ꢀ10544. (d) Ishiyama, T.; Miyaura, N. Iridiumꢀ
catalyzed borylation of arenes and heteroarenes via C–H activation.
Pure Appl. Chem. 2006, 78, 1369ꢀ1375. (e) Boebel, T. A.; Hartwig, J.
F. SilylꢀDirected, IridiumꢀCatalyzed orthoꢀBorylation of Arenes. A
OneꢀPot orthoꢀBorylation of Phenols, Arylamines, and Alkylarenes. J.
Am. Chem. Soc. 2008, 130, 7534ꢀ7535. (f) Yamazaki, K.; Kawamorita,
S.; Ohmiya, H.; Sawamura, M. Directed Ortho Borylation of Phenol
Derivatives Catalyzed by a SilicaꢀSupported Iridium Complex. Org.
Lett. 2010, 12, 3978ꢀ3981. (g) Kawamorita, S.; Miyazaki, T.; Ohmiya,
H.; Iwai, T.; Sawamura, M. RhꢀCatalyzed OrthoꢀSelective C–H
Borylation of NꢀFunctionalized Arenes with SilicaꢀSupported Bridgeꢀ
head Monophosphine Ligands. J. Am. Chem. Soc. 2011, 133, 19310ꢀ
19313. (h) Kuninobu, Y.; Iwanaga, T.; Omura, T.; Takai, K. Palladiꢀ
umꢀCatalyzed orthoꢀSelective C–H Borylation of 2ꢀPhenylpyridine
and Its Derivatives at Room Temperature. Angew. Chem. Int. Ed.
2013, 52, 4431ꢀ4434. (i) Mazzacano, T. J.; Mankad, N. P. Base Metal
Catalysts for Photochemical C−H Borylation That Utilize Metꢀ
al−Metal Cooperativity. J. Am. Chem. Soc. 2013, 135, 17258ꢀ17261.
(j) Cheng, C.; Hartwig, J. F. RhodiumꢀCatalyzed Intermolecular C–H
Silylation of Arenes with High Steric Regiocontrol. Science 2014, 343,
853ꢀ857. (k) Obligacion, J. V.; Semproni, S. P.; Chirik, P. J. Cobaltꢀ
Catalyzed C−H Borylation. J. Am. Chem. Soc. 2014, 136, 4133ꢀ4136.
(l) FernándezꢀSalas, J.; Manzini, S.; Piola, L.; Slawin, A. M. Z.; Noꢀ
lan, S. P. Ruthenium catalysed C–H bond borylation. Chem. Commun.
2014, 50, 6782ꢀ6784. (m) Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M.
A metaꢀselective C–H borylation directed by a secondary interaction
between ligand and substrate. Nat. Chem., 2015, 7, 712ꢀ717. (n)
Dombray, T.; Werncke, C. G.; Jiang, S.; Grellier, M.; Vendier, L.;
Bontemps, S.; Sortais, J.ꢀB.; SaboꢀEtienne, S.; Darcel, C. Ironꢀ
Catalyzed C−H Borylation of Arenes. J. Am. Chem. Soc. 2015, 137,
4062ꢀ4065. (o) Esteruelas, M. A.; Oliván, M.; Vélez, A.
POP−RhodiumꢀPromoted C−H and B−H Bond Activation and C−B
Bond Formation. Organometallics 2015, 34, 1911ꢀ1924. (p) Wang,
G.; Xu, L.; Li, P. Double N,BꢀType Bidentate Boryl Ligands Enaꢀ
bling a Highly Active Iridium Catalyst for C–H Borylation. J. Am.
Chem. Soc. 2015, 137, 8058ꢀ8061. (q) Furukawa, T.; Tobisu, M.;
Chatani, N. C−H Functionalization at Sterically Congested Positions
by the PlatinumꢀCatalyzed Borylation of Arenes. J. Am. Chem. Soc.
2015, 137, 12211ꢀ12214. (r) Furukawa, T.; Tobisu, M.; Chatani, N.
Nickelꢀcatalyzed borylation of arenes and indoles via C–H bond
cleavage. Chem. Commun. 2015, 51, 6508ꢀ6511. (s) Bheeter, C. B.;
Chowdhury, A. D.; Adam, R.; Jackstell, R.; Beller, M. Efficient Rhꢀ
catalyzed C–H borylation of arene derivatives under photochemical
conditions. Org. Biomol. Chem. 2015, 13, 10336ꢀ10340. (t) Press, L.
P.; Kosanovich, A. J.; McCulloch, B. J.; Ozerov, O. V. Highꢀ
Turnover Aromatic C−H Borylation Catalyzed by POCOPꢀType Pinꢀ
cer Complexes of Iridium. J. Am. Chem. Soc. 2016, 138, 9487ꢀ9497.
(u) Sarkar, De S.; Kumar, N. Y. P.; Ackermann, L. Ruthenium(II)
BiscarboxylateꢀCatalyzed Borylations of C(sp2)–H and C(sp3)–H
Bonds. Chem. Eur. J. 2017, 23, 84ꢀ87. (v) Wang, G.; Liu, L.; Wang,
H.; Ding, Y.; Zhou, J.; Mao, S.; Li, P. N,BꢀBidentate Boryl Ligandꢀ
Supported Iridium Catalyst for Efficient FunctionalꢀGroupꢀDirected
C−H Borylation. J. Am. Chem. Soc. 2017, 139, 91ꢀ94. (w) Li, H.ꢀL.;
Kuninobu, Y.; Kanai, M. Lewis Acid–Base InteractionꢀControlled
orthoꢀSelective C–H Borylation of Aryl Sulfides. Angew. Chem., Int.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Bijpost, E. A.; Duchateau, R.; Teuben, J. H. Early transition
metal catalyzedꢀhydroboration of alkenes. J. Mol. Catal. A: Chemical
1995, 95, 121ꢀ128.
(13) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.;
Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091ꢀ8103.
(14) (a) Arndt, S.; Trifonov, A.; Spaniol, T. P.; Okuda, J.; Kitamuꢀ
ra, M.; Takahashi, T. Metalation of aromatic heterocycles by yttrium
alkyl complexes that contain a linked amidoꢀcyclopentadienyl ligand:
synthesis, structure and Lewis base adduct formation. J. Organomet.
Chem. 2002, 158ꢀ166. (b) Spaniol, T. P.; Okuda, J.; Kitamura, M.;
Takahashi, T. orthoꢀMetalation of aromatic ethers by yttrium alkyl
complexes that contain a linked amidoꢀcyclopentadienyl ligand. J.
Organomet. Chem. 2003, 194ꢀ199.
5
ACS Paragon Plus Environment