Noriyoshi Arai et al.
COMMUNICATIONS
Experimental Section
Laghmari, P. Lhoste, D. Sinou, J. Chem. Soc. Chem.
Commun. 1991, 1684–1685; f) A. G. Becalski, W. R.
Cullen, M. D. Fryzuk, B. R. James, G.-J. Kang, S. J.
Rettig, Inorg. Chem. 1991, 30, 5002–5008; g) M. J.
Burk, J. E. Feaster, J. Am. Chem. Soc. 1992, 114, 6266–
6267; h) C. Lensink, J. G. de Vries, Tetrahedron: Asym-
metry 1992, 3, 235–238; i) M. J. Burk, J. P. Martinez,
J. E. Feaster, N. Cosford, Tetrahedron 1994, 50, 4399–
4428; j) J. M. Buriak, J. A. Osborn, Organometallics
1996, 15, 3161–3169; k) F. Spindler, H.-U. Blaser, Adv.
Synth. Catal. 2001, 343, 68–70; l) G. Shang, Q. Yang, X.
Zhang, Angew. Chem. 2006, 118, 6508–6510; Angew.
Chem. Int. Ed. 2006, 45, 6360–6362; m) C. Li, J. Xiao, J.
Am. Chem. Soc. 2008, 130, 13208–13209; n) N. Yoshika-
wa, L. Tan, J. C. McWilliams, D. Ramasamy, R. Shep-
pard, Org. Lett. 2010, 12, 276–279.
Typical Procedure for the Asymmetric
Hydrogenation of 1a with (SP,SN)-3
Ruthenium complex (SP,SN)-3 (1.1 mg, 1.1 mmol), 1a (2.43 g,
11.0 mmol), and t-C4H9OK (42.1 mg, 0.38 mmol) were
placed in a 100-mL glass autoclave equipped with a Teflon-
coated magnetic stirring bar. Toluene (5.0 mL) which had
been degassed by three freeze-thaw cycles was added to this
autoclave. Hydrogen was introduced into the autoclave at
a pressure of 10 atm, and then the reaction mixture was vig-
orously stirred at 408C for 24 h. After carefully venting the
hydrogen gas, the solvent was removed under reduced pres-
sure. The residue was purified by silica-gel column chroma-
tography giving (R)-2a as a colorless oil; yield: 2.44 g (99%,
99% ee). [a]D25: À38.7 (c 1.11, CHCl3); literature[3u] [a]D:
À32.3 (c 1.03, CHCl3), 97% ee (R). 1H NMR (400 MHz,
CDCl3): d=1.55 (d, 3H, J=6.7 Hz), 3.89 (s, 3H), 4.41–4.52
(m, 1H), 4.62 (br s, 1H), 6.33 (dd, 1H, J=7.9, 1.4 Hz), 6.57–
6.64 (m, 1H), 6.66–6.72 (m, 1H), 6.76 (dd, 1H, J=7.9,
1.4 Hz), 7.18–7.40 (m, 5H). The enantiomeric excess of 2a
was determined by HPLC analysis [CHIRALCEL OD-H
column (4.6ꢂ250 mm), 308C, hexane:2-propanol=99:1, 1.0
mLminÀ1, 254 nm]: tR of (S)-2a=6.6 min (0.7%), tR of (R)-
2a=9.4 min (99.3%).
[3] For selected studies using Ir catalysts, see: a) F. Spin-
dler, B. Pugin, H.-U. Blaser, Angew. Chem. 1990, 102,
561–562; Angew. Chem. Int. Ed. Engl. 1990, 29, 558–
559; b) T. Morrimoto, N. Nakajima, K. Achiwa, Synlett
1995, 748–750; c) K. Tani, J. Onouchi, Y. Yamagata, Y.
Kataoka, Chem. Lett. 1995, 955–956; d) H.-U. Blaser, F.
Spindler, Top. Catal. Zeitschrift wurde erst 1994 gerꢀn-
det! 1977, 4, 275–282; e) P. Schnider, G. Koch, R.
Prꢃtꢆt, G. Wang, F. M. Bohnen, C. Krꢇger, A. Pfaltz,
Chem. Eur. J. 1997, 3, 887–892; f) G. Zhu, X. Zhang,
Tetrahedron: Asymmetry 1998, 9, 2415–2418; g) H.-U.
Blaser, H.-P. Buser, K. Coers, R. Hanreich, H.-P. Jalett,
E. Jelsch, B. Pugin, H.-D. Schnider, F. Spindler, A.
Wegmann, Chimia 1999, 53, 275–280; h) S. Kainz, A.
Brinkmann, W. Leitner, A. Pfaltz, J. Am. Chem. Soc.
1999, 121, 6421–6429; i) D. Xiao, X. Zhang, Angew.
Chem. 2001, 113, 3533–3536; Angew. Chem. Int. Ed.
2001, 40, 3425–3428; j) C. Moessner, C. Bolm, Angew.
Chem. 2005, 117, 7736–7739; Angew. Chem. Int. Ed.
2005, 44, 7564–7567; k) A. Dervisi, C. Carcedo, L. Ooi,
Adv. Synth. Catal. 2006, 348, 175–183; l) T. Imamoto, N.
Iwadate, K. Yoshida, Org. Lett. 2006, 8, 2289–2292;
m) A. Trifonova, J. S. Diesen, P. G. Andersson, Chem.
Eur. J. 2006, 12, 2318–2328; n) T. Yamagata, H. Tadao-
ka, M. Nagata, T. Hirao, Y. Kataoka, V. Ratovelomana-
na-Vidal, J. P. Genet, K. Mashima, Organometallics
2006, 25, 2505–2513; o) S.-F. Zhu, J.-B. Xie, Y.-Z.
Zhang, S. Li. Q.-L. Zhou, J. Am. Chem. Soc. 2006, 128,
12886–12891; p) M. N. Cheemala, P. Knochel, Org. Lett.
2007, 9, 3089–3092; q) M. T. Reetz, O. Bondarev,
Angew. Chem. 2007, 119, 4607–4610; Angew. Chem.
Int. Ed. 2007, 46, 4523–4526; r) C. Li, C. Wang, B.
Villa-Marcos, J. Xiao, J. Am. Chem. Soc. 2008, 130,
14450–14451; s) W. Li, G. Hou, M. Chang, X. Zhang,
Adv. Synth. Catal. 2009, 351, 3123–3127; t) Z. Han, Z.
Wang, X. Zhang, K. Ding, Angew. Chem. 2009, 121,
5449–5453; Angew. Chem. Int. Ed. 2009, 48, 5345–5349;
u) N. Mrsic, A. J. Minnaard, B. L. Feringa, J. G. de V-
ries, J. Am. Chem. Soc. 2009, 131, 8358–8359; v) G.
Hou, F. Gosselin, W. Li, J. C. McWilliams, Y. Sun, M.
Weisel, P. D. OꢈShea, C. Chen, I. W. Davies, X. Zhang,
J. Am. Chem. Soc. 2009, 131, 9882–9883; w) G. Hou, R.
Tao, Y. Sun, X. Zhang, F. Gosselin, J. Am. Chem. Soc.
2010, 132, 2124–2125; x) A. Baeza, A. Pfaltz, Chem.
Eur. J. 2010, 16, 4003–4009.
Acknowledgements
This work was supported by a Grant-in-Aid from the Japan
Society for the Promotion of Science (JSPS) (No. 24350042).
References
[1] Recent reviews: a) T. Ohkuma, M. Kitamura, R.
Noyori, in: Catalytic Asymmetric Synthesis, 2nd edn.,
(Ed.: I. Ojima), Wiley-VCH, New York, 2000, pp 1–
110; b) F. Spindler, H.-U. Blaser, in: Transition Metals
for Organic Synthesis, 2nd edn., Vol. 2, (Eds.: M.
Beller, C. Bolm), Wiley-VCH, Weinheim, 2004,
pp 113–123; c) F. Spindler, H.-U. Blaser, in The Hand-
book of Homogeneous Hydrogenation, Vol. 3, (Eds.:
J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim,
2007, pp 1193–1200; d) L. Xu, X. Wu, J. Xiao, in: Sci-
ence of Synthesis: Stereoselective Synthesis, Vol. 2, (Ed.:
G. A. Molander), Thieme, Stuttgart, 2010, pp 251–309;
e) T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010,
352, 753–819; f) N. Fleury-Brꢃgeot, V. de La Fuente, S.
Castillꢄn, C. Claver, ChemCatChem 2010, 2, 1346–1371;
g) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011,
111, 1713–1760.
[2] For selected studies using Rh catalysts, see: a) A. Levi,
G. Modena, G. Scorrano, J. Chem. Soc. Chem.
Commun. 1975, 6–7; b) J. Bakos, I. Tꢄth, B. Heil, L.
Markꢄ, J. Organomet. Chem. 1985, 279, 23–29; c) G.-J.
Kang, W. R. Cullen, M. D. Fryzuk, B. R. James, J. P.
Kutney, J. Chem. Soc. Chem. Commun. 1988, 1466–
1467; d) Y. N. C. Chan, J. A. Osborn, J. Am. Chem. Soc.
1990, 112, 9400–9401; e) J. Bakos, ꢅ. Orosz, B. Heil, M.
2094
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2012, 354, 2089 – 2095