1582
F. Alonso et al.
LETTER
and monitored by GLC-MS. The resulting mixture was
References and Notes
diluted with EtOAc (10 mL), filtered through a pad
containing Celite, and the filtrate was dried over MgSO4.
The residue obtained after removal of the solvent (0.02 bar)
was purified by column chromatography (silica gel, hexane,
or hexane–EtOAc) to give the pure stilbene. The diastereo-
meric ratio was determined on the basis of the GC and 1H
NMR analyses.
Stilbene was characterized by comparison of its physical and
spectroscopic properties with those of a commercially
available sample (Aldrich). 1-(4-Methylphenyl)-2-phenyl-
ethene,27 1-(3-methylphenyl)-2-phenylethene,28 1-(2-
methylphenyl)-2-phenylethene,27 1-(4-trifluoromethylphenyl)-
-2-phenylethene,29 1-(3-trifluoromethylphenyl)-2-phenyl-
ethene,30 1-(4-methoxyphenyl)-2-phenylethene,31 1-(3-
methoxyphenyl)-2-phenylethene,31 1-(2-methoxyphenyl)-2-
phenylethene,32 1-(2-furyl)-2-phenylethene,33 1-(1,3-di-
methoxyphenyl)-2-phenylethene,31 and 1-(1,2,3-trimethoxy-
phenyl)-2-phenylethene34 were characterised by comparison
of their physical and spectroscopic data with those described
in the literature.
(1) Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953,
580, 44.
(2) For reviews, see: (a) Maryanoff, B. E.; Reitz, A. B. Chem.
Rev. 1989, 89, 863. (b) Edmonds, M.; Abell, A. In Modern
Carbonyl Olefination; Takeda, T., Ed.; Wiley-VCH:
Weinheim, 2004, 1.
(3) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.
(4) For a review, see: Taylor, R. J. K.; Reid, M.; Foot, J.; Raw,
S. A. Acc. Chem. Res. 2005, 38, 851.
(5) Barrett, A. G. M.; Hamprecht, D.; Ohkubo, M. J. Org. Chem.
1997, 62, 9376.
(6) Shuto, S.; Niizuma, S.; Matsuda, A. J. Org. Chem. 1998, 63,
4489.
(7) Maiti, A.; Yadav, J. S. Synth. Commun. 2001, 31, 1499.
(8) MacCoss, R. N.; Balskus, E. P.; Ley, S. V. Tetrahedron Lett.
2003, 44, 7779.
(9) (a) Bressette, A. R.; Glover, L. C. IV Synlett 2004, 738.
(b) Shet, J.; Desai, V.; Tilve, S. Synthesis 2004, 1859.
(10) Pinacho Crisóstomo, F. R.; Carrillo, R.; Martín, T.; García-
Tellado, F.; Martín, V. S. J. Org. Chem. 2005, 70, 10099.
(11) Vatèle, J.-M. Tetrahedron Lett. 2006, 47, 715.
(12) For reviews, see: (a) Hamid, M. H. S. A.; Slatford, P. A.;
Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555.
(b) Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. J.
Dalton Trans. 2009, 753.
(13) For reviews, see: (a) Alonso, F.; Yus, M. Chem. Soc. Rev.
2004, 33, 284. (b) Alonso, F.; Yus, M. Pure Appl. Chem.
2008, 80, 1005.
(14) (a) Alonso, F.; Calvino, J. J.; Osante, I.; Yus, M. Chem. Lett.
2005, 34, 1262. (b) Alonso, F.; Calvino, J. J.; Osante, I.;
Yus, M. J. Exp. Nanosci. 2006, 1, 419.
(15) (a) Alonso, F.; Osante, I.; Yus, M. Adv. Synth. Catal. 2006,
348, 305. (b) Alonso, F.; Osante, I.; Yus, M. Synlett 2006,
3017. (c) Alonso, F.; Osante, I.; Yus, M. Tetrahedron 2007,
63, 93. (d) Alonso, F.; Riente, P.; Yus, M. ARKIVOC 2008,
(iv), 8.
(16) (a) Alonso, F.; Riente, P.; Yus, M. Tetrahedron 2008, 64,
1847. (b) Alonso, F.; Riente, P.; Yus, M. Tetrahedron Lett.
2008, 49, 1939.
(20) Following the general procedure but using double the
amount of lithium metal (28 mg, 4 mmol) and adding
successively the phosphonium salt and the alcohol to the
NiNP suspension.
(21) For a review, see: Ferré-Filmon, K.; Delaude, L.;
Demonceau, A.; Noels, A. F. Coord. Chem. Rev. 2004, 248,
2323.
(22) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T. J. Org.
Chem. 1992, 57, 2865.
(23) Belluci, G.; Chiappe, C.; Lo Moro, G. Tetrahedron Lett.
1996, 37, 4225.
(24) Zhang, W.; Go, M. L. Eur. J. Med. Chem. 2007, 42, 841.
(25) It is known that phosphorus compounds can bind strongly to
metal centres, therefore, blocking the access of the substrate
to the active site: Widegren, J. A.; Finke, R. G. J. Mol. Catal.
A: Chem. 2003, 198, 317.
(26) This assertion is made on the basis that in every redox
process a species is oxidised at the same time that the oxidant
agent is reduced. In the present case, we assume that
dehydrogenation of the alcohol occurs leading to the
intermediate aldehyde (the ‘oxidation’ product). However,
other species resulting from a reduction step are not
detected.
(27) Xi, Z.; Liu, B.; Chen, W. J. Org. Chem. 2008, 73, 3954.
(28) Ito, Y.; Uozu, Y.; Dote, T.; Ueda, M.; Matsuura, T. J. Am.
Chem. Soc. 1988, 110, 189.
(29) Wang, Z.; Wnuk, S. F. J. Org. Chem. 2005, 70, 3281.
(30) Cui, X.; Li, J.; Zhang, Z.-P.; Fu, Y.; Liu, L.; Guo, Q.-X.
J. Org. Chem. 2007, 72, 9342.
(17) Alonso, F.; Riente, P.; Yus, M. Synlett 2008, 1289.
(18) (a) Alonso, F.; Riente, P.; Yus, M. Synlett 2007, 1877.
(b) Alonso, F.; Riente, P.; Yus, M. Eur. J. Org. Chem. 2008,
4908.
(19) General Procedure for the Wittig-Type Olefination with
Alcohols Promoted by Nickel Nanoparticles
n-BuLi (1.6 M, 625 mL, 1.0 mmol) was added dropwise to a
suspension of commercially available benzyltriphenyl-
phosphonium chloride (583 mg, 1.5 mmol) in THF (2 mL) at
0 °C. While the corresponding ylide was being formed (ca.
20 min), nickel(II) chloride (130 mg, 1 mmol) was added
over a suspension of lithium (14 mg, 2 mmol) and DTBB (13
mg, 0.05 mmol) in THF (2 mL) at r.t. under argon. The
reaction mixture, which was initially dark blue, changed to
black indicating that nickel(0) had been formed. After 10
min, the requisite benzyl alcohol (1 mmol) and the initially
prepared ylide suspension were added to the NiNP
suspension. The reaction mixture was warmed up to reflux
(31) Roberts, J. C.; Pincock, J. A. J. Org. Chem. 2004, 69, 4279.
(32) Aksin, O.; Türkmen, H.; Artok, L.; Çetinkaya, B.; Ni, C.;
Büyükgüngör, O.; Özkal, E. J. Organomet. Chem. 2006,
691, 3027.
(33) Cahiez, G.; Gager, O.; Lecomte, F. Org. Lett. 2008, 10,
5255.
(34) Azzena, U.; Dettori, G.; Idini, M. V.; Pisano, L.; Sechi, G.
Tetrahedron 2003, 59, 7961.
Synlett 2009, No. 10, 1579–1582 © Thieme Stuttgart · New York