K. H. Kim et al. / Tetrahedron Letters 54 (2013) 419–423
423
8. For the selected examples on Pd-catalyzed Heck reaction with aryl iodide
under the influence of AgOAc/AcOH, see: (a) Xu, D.; Lu, C.; Chen, W. Tetrahedron
2012, 68, 1466–1474; (b) Guo, H.-M.; Rao, W.-H.; Niu, H.-Y.; Jiang, L.-L.; Liang,
L.; Zhang, Y.; Qu, G.-R. RSC Adv. 2011, 1, 961–963.
9. For the synthesis of tetrasubstituted allylic alcohols and their synthetic
applications, see: (a) He, Z.; Kirchberg, S.; Frohlich, R.; Studer, A. Angew.
Chem., Int. Ed. 2012, 51, 3699–3702; (b) Xie, M.; Lin, G.; Zhang, J.; Li, M.; Feng, C.
J. Organomet. Chem. 2010, 695, 882–886; (c) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.;
Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 14052–14053; (d) Zhang, D.-H.; Dai, L.-
Z.; Shi, M. Eur. J. Org. Chem. 2010, 5454–5459; (e) Novoa, A.; Pellegrini-Moise,
N.; Bourg, S.; Thoret, S.; Dubois, J.; Aubert, G.; Cresteil, T.; Chapleur, Y. Eur. J.
Med. Chem. 2011, 46, 3570–3580; (f) Aoki, M.; Izumi, S.; Kaneko, M.; Ukai, K.;
Takaya, J.; Iwasawa, N. Org. Lett. 2007, 9, 1251–1253.
In summary, the primary acetates of Morita–Baylis–Hillman ad-
ducts were synthesized via a palladium-catalyzed arylation of
methyl 2-(acetoxymethyl)acrylate with aryl iodides in good yield
in a highly stereoselective manner under mild conditions (50 °C).
Acknowledgments
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology
(2012R1A1B3000541). Spectroscopic data were obtained from
the Korea Basic Science Institute, Gwangju branch.
10. Typical procedure for the synthesis of 2a: A mixture of 1a (79 mg, 0.5 mmol),
iodobenzene (112 mg, 1.1 equiv), Pd(OAc)2 (6 mg, 5 mol%), AgOAc (92 mg,
1.1 equiv), and AcOH (1.5 g, 50 equiv) was heated to 50 °C for 5 h. After the
aqueous extractive workup and column chromatographic purification process
(hexanes/Et2O, 20:1), the product 2a was isolated as a colorless oil, 101 mg
(86%). Other compounds were synthesized similarly, and the selected
spectroscopic data of unknown compounds 2b, 2e-meta, 2e-ortho, 2h, 3a, 3e-
meta, 3f, and 3i are as follows.
References and notes
1. For the palladium-catalyzed chelation-assisted arylation of allyl esters with
arenes, see: (a) Shang, X.; Xiong, Y.; Zhang, Y.; Zhang, L.; Liu, Z.-Q. Synlett 2012,
259–262; (b) Pan, D.; Yu, M.; Chen, W.; Jiao, N. Chem. Asian J. 2010, 5, 1090–
1093; (c) Li, Z.; Zhang, Y.; Liu, Z.-Q. Org. Lett. 2012, 14, 74–77; (d) Zhang, Y.; Li,
Z.; Liu, Z.-Q. Org. Lett. 2012, 14, 226–229; (e) Pan, D.; Jiao, N. Synlett 2010,
1577–1588. and further references cited therein.
2. For the palladium-catalyzed chelation-assisted arylation of allyl esters with
aryl halides, arylboronic acids, and arenediazonium salts, see: (a) Pan, D.; Chen,
A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.; Zhang, L.; Jiao, N. Angew.
Chem., Int. Ed. 2008, 47, 4729–4732; (b) Su, Y.; Jiao, Ning Org. Lett. 2009, 11,
2980–2983; (c) Moro, A. V.; Cardoso, F. S. P.; Correia, C. R. D. Org. Lett. 2009, 11,
3642–3645.
3. For the palladium-catalyzed arylation of allylic esters involving b-OAc
elimination, see: (a) Liu, Y.; Yao, B.; Deng, C.-L.; Tang, R.-Y.; Zhang, X.-G.; Li, J.-
H. Org. Lett. 2011, 13, 1126–1129; (b) Yao, B.; Liu, Y.; Wang, M.-K.; Li, J.-H.; Tang,
R.-Y.; Zhang, X.-G.; Deng, C.-L. Adv. Synth. Catal. 2012, 354, 1069–1076; (c) Mino,
T.; Koizumi, T.; Suzuki, S.; Hirai, K.; Kajiwara, K.; Sakamoto, M.; Fujita, T. Eur. J.
Org. Chem. 2012, 678–680; (d) Yuan, F.-Q.; Sun, F.-Y.; Han, F.-S. Tetrahedron
2012, 68, 6837–6842; (e) Mariampillai, B.; Herse, C.; Lautens, M. Org. Lett. 2005,
7, 4745–4747; Ma and co-workers have also reported the palladium-catalyzed
reaction of indole and methyl 2-(acetoxymethyl)acrylate involving a b-OAc
elimination, see: (f) Ma, S.; Yu, S. Tetrahedron Lett. 2004, 45, 8419–8422; (g) Ma,
S.; Yu, S.; Peng, Z.; Guo, H. J. Org. Chem. 2006, 71, 9865–9868.
4. For our recent contributions on the palladium-catalyzed arylation with arenes,
see: (a) Lee, H. S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Adv. Synth. Catal. 2012, 354,
2419–2426; (b) Kim, K. H.; Lee, S.; Kim, S. H.; Lim, C. H.; Kim, J. N. Tetrahedron Lett.
2012, 53, 5088–5093; (c) Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011,
52, 6228–6233; (d) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett.
2012, 53, 2761–2764; (e) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron
Lett. 2012, 53, 1323–1327; The condition employing PivOH as a proton shuttle
during the aryl C–H bond activation was originally developed by Fagnou and
applied extensively for the C–H bond activation of arenes, see: (f) Lafrance, M.;
Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496–16497; (g) Stuart, D. R.; Fagnou, K.
Science 2007, 316, 1172–1175; (h) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org.
Chem. 2012, 77, 658–668; (i) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.;
LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676–14681; (j)
Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 8138–8142.
Compound 2b: 89%; colorless oil; IR (film) 1741, 1721, 1234 cmÀ1 1H NMR
;
(CDCl3, 300 MHz) d 2.06 (s, 3H), 2.25 (s, 3H), 2.30 (s, 3H), 3.85 (s, 3H), 4.84 (s,
2H), 6.98 (s, 1H), 7.01–7.14 (m, 2H), 8.04 (s, 1H); 13C NMR (CDCl3, 75 MHz) d
19.33, 20.79, 20.91, 52.13, 59.42, 127.17, 129.20, 129.95, 130.01, 133.31,
133.80, 135.21, 144.92, 167.05, 170.46; ESIMS m/z 285 [M+Na]+. Anal. Calcd for
C
15H18O4: C, 68.68; H, 6.92. Found: C, 68.53; H, 7.03.
Compound 2e-meta: 82%; colorless oil; IR (film) 1742, 1718, 1234 cmÀ1
;
1H
NMR (CDCl3, 300 MHz) d 2.03 (s, 3H), 2.25 (s, 6H), 3.76 (s, 3H), 4.88 (s, 2H), 6.91
(s, 2H), 6.94 (s, 1H), 7.86 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 20.83, 21.20,
52.15, 59.37, 126.13, 127.17, 131.23, 134.03, 138.13, 145.86, 167.35, 170.60;
ESIMS m/z 285 [M+Na]+. Anal. Calcd for C15H18O4: C, 68.68; H, 6.92. Found: C,
68.85; H, 6.97.
Compound 2e-ortho: 79%; colorless oil; IR (film) 1742, 1720, 1240 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d 2.00 (s, 3H), 2.20 (s, 3H), 2.25 (s, 3H), 3.77 (s, 3H), 4.77
(s, 2H), 6.94 (d, J = 7.8 Hz, 1H), 6.96 (s, 1H), 7.01 (d, J = 7.8 Hz, 1H), 7.97 (s, 1H);
13C NMR (CDCl3, 75 MHz) d 19.18, 20.87, 21.16, 52.13, 59.53, 126.60, 126.71,
128.66, 130.55, 131.02, 137.04, 139.48, 144.71, 167.20, 170.59; ESIMS m/z 285
[M+Na]+. Anal. Calcd for C15H18O4: C, 68.68; H, 6.92. Found: C, 68.59; H, 6.77.
Compound 2h: 83%; colorless oil; IR (film) 1742, 1721, 1243 cmÀ1 1H NMR
;
(CDCl3, 300 MHz) d 1.40 (t, J = 7.2 Hz, 3H), 2.10 (s, 3H), 3.86 (s, 3H), 4.39 (q,
J = 7.2 Hz, 2H), 4.92 (s, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.99 (s, 1H), 8.08 (d,
J = 8.4 Hz, 2H); 13C NMR (CDCl3, 75 MHz) d 14.25, 20.85, 52.41, 59.00, 61.19,
128.42, 129.18, 129.80, 131.11, 138.41, 144.08, 165.86, 166.88, 170.50; ESIMS
m/z 329 [M+Na]+. Anal. Calcd for C16H18O6: C, 62.74; H, 5.92. Found: C, 62.92;
H, 5.69.
Compound 3a: 81%; colorless oil; IR (film) 1741, 1720, 1231 cmÀ1 1H NMR
;
(CDCl3, 300 MHz) d 2.09 (s, 3H), 3.51 (s, 3H), 4.82 (s, 2H), 7.11–7.16 (m, 2H),
7.17–7.23 (m, 2H), 7.27–7.31 (m, 3H), 7.32–7.37 (m, 3H); 13C NMR (CDCl3,
75 MHz) d 20.88, 51.77, 64.11, 126.54, 128.01, 128.30, 128.36, 128.56, 128.70,
129.30, 139.49, 141.27, 153.27, 169.39, 170.56; ESIMS m/z 333 [M+Na]+. Anal.
Calcd for C19H18O4: C, 73.53; H, 5.85. Found: C, 73.32; H, 5.96.
Compound 3e-meta: 77%; colorless oil; IR (film) 1742, 1717, 1230 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d 2.01 (s, 3H), 2.19 (s, 6H), 2.20 (s, 6H), 3.44 (s, 3H), 4.70
(s, 2H), 6.68 (s, 2H), 6.73 (s, 2H), 6.86 (s, 1H), 6.89 (s, 1H); 13C NMR (CDCl3,
75 MHz) d 20.90, 21.18, 21.24, 51.71, 64.26, 125.95, 126.24, 126.94, 130.07,
130.27, 137.38, 137.67, 139.44, 141.18, 154.12, 169.73, 170.54; ESIMS m/z 389
[M+Na]+. Anal. Calcd for C23H26O4: C, 75.38; H, 7.15. Found: C, 75.16; H, 7.18.
5. For
the
synthesis
and
synthetic
applications
of
methyl
2-
(acetoxymethyl)acrylate, see: (a) Du, Y.; Feng, J.; Lu, X. Org. Lett. 2005, 7,
1987–1989; (b) Mandal, S. K.; Paira, M.; Roy, S. C. J. Org. Chem. 2008, 73, 3823–
3827; (c) Zhuang, Z.; Pan, F.; Fu, J.-G.; Chen, J.-M.; Liao, W.-W. Org. Lett. 2011,
13, 6164–6167; (d) Pan, F.; Chen, J.-M.; Zhuang, Z.; Fang, Y.-Z.; Zhang, S. X.-A.;
Liao, W.-W. Org. Biomol. Chem. 2012, 10, 2214–2217; (e) Adak, L.; Bhadra, S.;
Chattopadhyay, K.; Ranu, B. C. New J. Chem. 2011, 35, 430–437; (f) Dey, R.;
Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2008, 73, 9461–9464; (g) Adak, L.;
Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2009, 74, 3982–3985; (h) Qi, J.;
Porco, J. A., Jr. J. Am. Chem. Soc. 2007, 129, 12682–12683; (i) Kazmaier, U.;
Schmidt, C. Synthesis 2009, 2435–2439.
Compound 3f: 82%; pale yellow oil; IR (film) 1742, 1718, 1231 cmÀ1 1H NMR
;
(CDCl3, 300 MHz) d 2.01 (s, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 3.46 (s, 3H), 4.74 (s,
2H), 6.89–6.95 (m, 2H), 6.96–7.10 (m, 6H); 13C NMR (CDCl3, 75 MHz) d 20.91,
21.20, 21.23, 51.73, 64.48, 125.40, 128.66, 128.68, 128.92, 129.38, 136.89,
138.29, 138.57, 138.70, 153.78, 169.69, 170.61; ESIMS m/z 361 [M+Na]+. Anal.
Calcd for C21H22O4: C, 74.54; H, 6.55. Found: C, 74.51; H, 6.81.
Compound 3i: 72%; colorless oil; IR (film) 1739, 1716, 1605, 1512, 1249 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 2.03 (s, 3H), 3.47 (s, 3H), 3.73 (s, 3H), 3.74 (s, 3H),
4.76 (s, 2H), 6.74 (d, J = 9.0 Hz, 2H), 6.78 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz,
2H), 7.05 (d, J = 9.0 Hz, 2H); 13C NMR (CDCl3, 75 MHz) d 20.97, 51.74, 55.17,
55.24, 64.84, 113.34, 113.58, 124.31, 130.40, 131.17, 132.23, 134.03, 153.50,
159.82, 160.07, 170.01, 170.70; ESIMS m/z 393 [M+Na]+. Anal. Calcd for
6. Very recently, a palladium-catalyzed arylation of methyl 2-(acetoxymethyl)acrylate
with triarylbismuth reagent has been reported involving a b-OAc elimination, see:
Rao, M. L. N.; Giri, S. Eur. J. Org. Chem. 2012, 4580–4589.
C
21H22O6: C, 68.10; H, 5.99. Found: C, 68.42; H, 5.73.
7. For the synthesis of MBH acetates and their synthetic applications, see: (a)
Basavaiah, D.; Muthukumaran, K.; Sreenivasulu, B. Synthesis 2000, 545–548; (b)
Kabalka, G. W.; Venkataiah, B.; Dong, G. Tetrahedron Lett. 2003, 44, 4673–4675;
(c) Liu, Y.; Mao, D.; Qian, J.; Lou, S.; Xu, Z.; Zhang, Y. Synthesis 2009, 1170–1174;
(d) Ollevier, T.; Mwene-Mbeja, T. M. Tetrahedron 2008, 64, 5150–5155; (e) Park,
J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25,
27–28; (f) Park, J.; Heo, R.; Kim, J.-Y.; Yoo, B. W.; Yoon, C. M. Bull. Korean Chem.
Soc. 2009, 30, 1195–1197; (g) Shanmugam, P.; Rajasingh, P. Tetrahedron 2004,
60, 9283–9295; (h) Sa, M. M.; Meier, L.; Fernandes, L.; Pergher, S. B. C. Catal.
Commun. 2007, 8, 1625–1629; (i) Lee, M. J.; Lee, K. Y.; Kim, J. N. Bull. Korean
Chem. Soc. 2005, 26, 477–480; (j) Garrido, N. M.; Garcia, M.; Sanchez, M. R.;
Diez, D.; Urones, J. G. Synlett 2010, 387–390; (k) Garrido, N. M.; Garcia, M.; Diez,
D.; Sanchez, M. R.; Sanz, F.; Urones, J. G. Org. Lett. 2008, 10, 1687–1690.
11. The mixture of four acetates was hydrolyzed to the corresponding alcohols
with K2CO3 in aqueous MeOH, and the structures of 4 and 5 were identified by
comparison with the reported data, see: (a) Ebner, C.; Pfaltz, A. Tetrahedron
2011, 67, 10287–10290; (b) Calo, V.; Nacci, A.; Monopoli, A.; Ferola, V. J. Org.
Chem. 2007, 72, 2596–2601.
12. (a) Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. Chem. Commun. 1998, 1639–
1640; (b) Kim, S. H.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 2039–
2042; (c) Nasiri, F.; Malakutikhah, D. Monatsh. Chem. 2011, 142, 807–812; (d)
Itoh, S.; Araki, T. WO 2009/064031 (Chem. Abstr. 2009, 150, 539329).
13. The b-H elimination with the ring proton is somewhat difficult because syn-
periplanarity between the C–H and C–Pd bonds would be difficult, as noted in
our previous paper.4a