C. De Risi et al. / Tetrahedron Letters 54 (2013) 283–286
285
The authors thank Dr. Alberto Casolari for his contribution to
NMR spectral analyses.
O2C Br NO2
N
CHO
R
R
References and notes
S
S
A
O2C
N
NO2
1. For selected reviews on cyclopropane-containing natural products and drugs,
see: (a) Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev. 2012, 41,
4631–4642; (b) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003,
103, 1625–1648; (c) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251–2253; (d)
Donaldson, W. A. Tetrahedron 2001, 57, 8589–8627.
2. (a) Burroughs, L. F. Nature 1957, 179, 360–361; (b) Vähätalo, M. L.; Virtanen, A.
I. Acta Chem. Scand. 1957, 11, 741–743.
3. For a review, see: Barlow, S. M.; Sullivan, F. M.; Lines, J. Food Chem. Toxicol.
2001, 39, 407–422.
H2O
Br
CO2
HO2C
HN
B
R
S
NO2
H2O NO2
H
CHO
H
N
R
S
D
R
C
S
4. Wipf, P.; Reeves, J. T.; Day, B. W. Curr. Pharm. Des. 2004, 10, 1417–1437.
5. Yamada, K.; Ojika, M.; Kigoshi, H. Nat. Prod. Rep. 2007, 24, 798–813.
6. Koyata, N.; Miura, T.; Akaiwa, Y.; Sasaki, H.; Sato, R.; Nagai, T.; Fujimori, H.;
Noguchi, T.; Kirihara, M.; Imai, N. Tetrahedron: Asymmetry 2009, 20, 2065–
2071; and the references cited therein.
Scheme 2. Proposed mechanism of nitrocyclopropanation.
7. (a) Ballini, R.; Fiorini, D.; Palmieri, A. ARKIVOC 2007, 7, 172–194; (b) Averina, E.
B.; Yashin, N. V.; Kuznetsova, T. S.; Zefirov, N. S. Russ. Chem. Rev. 2009, 78, 887–
902.
8. Zlatopolskiy, B. D.; Loscha, K.; Alvermann, P.; Kozhushkov, S. I.; Nikolaev, S. V.;
Zeeck, A.; de Meijere, A. Chem. Eur. J. 2004, 10, 4708–4717; and the references
cited therein.
9. For an application of a nitrocyclopropyl derivative as precursor of the antibiotic
Trovafloxacin, see: Brighty, K. E.; Castaldi, M. J. Synlett 1996, 1097–1099.
10. Ballini, R.; Fiorini, D.; Palmieri, A. Synlett 2003, 1704–1706.
11. Wascholowski, V.; Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Synthesis 2008,
1269–1275.
12. Lv, J.; Zhang, J.; Lin, Z.; Wang, Y. Chem. Eur. J. 2009, 15, 972–979.
13. Dong, L.-T.; Du, Q.-S.; Lou, C.-L.; Zhang, J.-M.; Lu, R.-J.; Yan, M. Synlett 2010,
266–270.
14. Zhang, J.-M.; Hu, Z.-P.; Zhao, S.-Q.; Yan, M. Tetrahedron 2009, 65, 802–806.
15. (a) Zhang, J.-M.; Hu, Z.-P.; Dong, L.-T.; Xuan, Y.-N.; Lou, C.-L.; Yan, M.
Tetrahedron: Asymmetry 2009, 20, 355–361; (b) Vesely, J.; Zhao, G.-L.;
Bartoszewicz, A.; Cordova, A. Tetrahedron Lett. 2008, 49, 4209–4212.
16. (a) Lee, H. J.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3437–3439; (b)
Russo, A.; Lattanzi, A. Tetrahedron: Asymmetry 2010, 21, 1155–1157; (c) Xuan,
Y.-N.; Nie, S.-Z.; Dong, L.-T.; Zhang, J.-M.; Yan, M. Org. Lett. 2009, 11, 1583–
1586; (d) McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org. Chem. 2006, 71, 7494–
7497.
17. Baricordi, N.; Benetti, S.; Bertolasi, V.; De Risi, C.; Pollini, G. P.; Zamberlan, F.;
Zanirato, V. Tetrahedron 2012, 68, 208–213.
18. For some recent examples, see: (a) Uria, U.; Vicario, J. L.; Badía, D.; Carrillo, L.;
Reyes, E.; Pesquera, A. Synthesis 2010, 701–713; (b) Companyó, X.; Alba, A.-N.;
Cárdenas, F.; Moyano, A.; Rios, R. Eur. J. Org. Chem. 2009, 3075–3080; (c)
Ibrahem, I.; Zhao, G.-L.; Rios, R.; Vesely, J.; Sundén, H.; Dziedzic, P.; Córdova, A.
Chem. Eur. J. 2008, 14, 7867–7879; (d) Xie, H.; Zu, L.; Li, H.; Wang, J.; Wang, W. J.
Am. Chem. Soc. 2007, 129, 10886–10894.
19. Typical procedure for the preparation of dihydrothiophenes 13–17: The
a,b-
unsaturated aldehyde (1.0 mmol) was added to an ice-cooled solution of
pyrrolidine (0.2 mmol) and benzoic acid (0.2 mmol) in CH2Cl2 (5 mL). After
10 min stirring, 7 (0.5 mmol) was added and the reaction mixture was kept at
0 °C for 4 h. Evaporation of the solvent and column chromatography of the
residue (EtOAc-PE) gave the title compounds.
20. Selected analytical data for compounds 13–17: physical and spectroscopic data
for compounds 13, 15, and 16 were in agreement with those reported: Tang, J.;
Xu, D. Q.; Xia, A. B.; Wang, Y. F.; Jiang, J. R.; Luo, S. P.; Xu, Z. Y. Adv. Synth. Catal.
2010, 352, 2121–2126.
Figure 3. ORTEP24 view of 19 showing the thermal ellipsoids at 30% level of
probability.
2-(2-Nitrophenyl)-2,5-dihydrothiophene-3-carbaldehyde (14): brownish solid
A plausible mechanism for the nitrocyclopropanation is likely to
involve the formation of enamine B, which is converted into imin-
ium-ion intermediate C through intramolecular nucleophilic sub-
stitution (Scheme 2). Hydrolysis of the latter eventually produces
D with cis stereochemistry between the aldehyde and nitro substit-
uents, a result consistent with previous findings observed by Yan
group.14
In conclusion, we reported a highly diastereoselective nitrocy-
clopropanation of 2,5-dihydrothiophene-3-carbaldehydes giving a
small library of new cyclopropane-containing S-heterocycles.
These compounds could be potentially useful as pharmacological
active compounds. Further extension of this process is currently
under study.
(EtOAc-PE, 1:1). Mp 95–96 °C; IR (neat): 1520, 1575, 1605, 1634, 1682 cmꢀ1
;
1H NMR (400 MHz, CDCl3): d = 4.05 (ddd, 1H, J = 18.4, 3.2, 2.4 Hz, H-5), 4.19
(ddd, 1H, J = 18.4, 5.4, 2.4 Hz, H-5), 6.03 (m, 1H, H-2), 7.20–7.25 (m, 1H, H-4),
7.27 (dd, 1H, J = 7.8, 1.6 Hz, ArH), 7.37 (td, 1H, J = 7.8, 1.6 Hz, ArH), 7.53 (td, 1H,
J = 8.0, 1.6 Hz, ArH), 7.93 (dd, J = 8.4, 1.2 Hz, 1H, ArH), 9.78 (s, 1H, CHO); 13C
NMR (100 MHz, CDCl3): d = 38.45 (CH2), 49.66 (CH), 124.98 (CH), 128.25 (CH),
128.63 (CH), 130.24 (C), 133.60 (CH), 137.36 (C), 147.25 (C), 151.28 (CH),
186.83 (CHO). Anal. Calcd. for C11H9NO3S: C, 56.16; H, 3.86. Found: C, 55.95; H,
4.02.
2-Methyl-2,5-dihydrothiophene-3-carbaldehyde (17): orange oil (EtOAc-PE, 1:9).
IR (neat): 1631, 1676 cmꢀ1 1H NMR (400 MHz, CDCl3): d = 1.51 (d, 3H,
;
J = 6.8 Hz, CH3), 3.87 (ddd, 1H, J = 18.2, 3.0, 2.4 Hz, H-5), 4.04 (ddd, 1H, J = 18.2,
5.4, 2.4 Hz, H-5), 4.40–4.60 (m, 1H, H-2), 6.84 (m, 1H, H-4), 9.77 (s, 1H, CHO);
13C NMR (100 MHz, CDCl3): d = 23.49 (CH3), 37.82 (CH2), 46.29 (CH), 149.23
(CH), 150.43 (C), 187.97 (CHO). Anal. Calcd. for C6H8OS: C, 56.22; H, 6.29.
Found: C, 56.30; H, 6.18.
21. Typical procedure for the nitrocyclopropanation reaction: DL-proline (0.5 mmol)
was added to an ice-cooled solution of 2,5-dihydrothiophene-3-carbaldehyde
(1.0 mmol) in MeOH (4.0 mL), and the mixture was stirred for 10 min.
Bromonitromethane (1.1 mmol) and NaOAc (1.1 mmol) were successively
added, and stirring was continued at rt overnight. The solvent was removed at
reduced pressure and the residue was purified by column chromatography
(EtOAc-PE) to afford the pure nitrocyclopropane compounds.
Acknowledgments
This work was financially supported by MIUR (PRIN 2009) with-
in the project ‘Metodologie sintetiche per la generazione di diver-
sità molecolare di rilevanza biologica’.