Regioselectivity in Nucleophilic Aromatic Substitution Reactions
Jambrina, C. R. Nevill, Jr., P. A. Lee, R. C. Schultz, J. A.
Wolos, L. C. Li, R. M. Campbell, B. D. Anderson, Bioorg.
Med. Chem. Lett. 2008, 18, 179–183.
2,6-Dichloropyridin-3-ol (37): Prepared according to the procedure
by Voisin et al.[32] 1H and 13C NMR spectra are in agreement with
literature values. Purity analysis: 98%. HRMS: calcd. for
C5H4Cl2NO [M + H]+ 163.9664; found 163.9667.
[15] J. Matsumoto, T. Miyamoto, A. Minamida, Y. Nishimura, J.
Heterocycl. Chem. 1984, 21, 673–679.
Compounds 16b, 18b, 20a, 21a, 22a, 25b, and 27b were not isolated,
because the regioselectivities of the reactions were biased towards
the other isomers; thus, their 1H NMR spectroscopic data were
determined from the reaction mixtures.
[16]
S. Schmid, M. Röttgen, U. Thewalt, V. Austel, Org. Biomol.
Chem. 2005, 3, 3408–3421.
[17] Y. Hirokawa, T. Horikawa, S. Kato, Chem. Pharm. Bull. 2000,
48, 1847–1853.
[18] T. Horikawa, Y. Hirokawa, S. Kato, Chem. Pharm. Bull. 2001,
49, 1621–1627.
[19] Y.-J. Shi, G. Humphrey, P. E. Maligres, R. A. Reamer, J. M.
Williams, Adv. Synth. Catal. 2006, 348, 309–312.
[20] J. F. Dropinski, T. Akiyama, M. Einstein, B. Habulihaz, T. Do-
ebber, J. P. Berger, P. T. Meinke, G. Q. Shi, Bioorg. Med. Chem.
Lett. 2005, 15, 5035–5038.
Supporting Information (see footnote on the first page of this arti-
1
cle): Table of H NMR chemical shifts and coupling constants for
pyridine hydrogen atoms in the starting materials 1–15 and the
products 16a–30a (2-isomers) and 16b–30b (6-isomers), copies of
1
the H and 13C NMR spectra for all isolated new compounds.
[21]
K. M. Engstrom, R. F. Henry, I. Marsden, Tetrahedron Lett.
2007, 48, 1359–1362.
Acknowledgments
[22]
C. R. Illig, J. Chen, M. J. Wall, K. J. Wilson, S. K. Ballentine,
M. J. Rudolph, R. L. DesJarlais, Y. Chen, C. Schubert, I. Pe-
trounia, C. S. Crysler, C. J. Molloy, M. A. Chaikin, C. L. Man-
they, M. R. Player, B. E. Tomczuk, S. K. Meegalla, Bioorg.
Med. Chem. Lett. 2008, 18, 1642–1648.
J. March, Advanced organic chemistry – Reactions, mechanisms,
and structure, 5th ed., Wiley, New York, 2001, p. 850ff.
a) Values from: C. Hansch, A. Leo, D. Hoekman, Exploring
QSAR, vol. 2 (“Hydrophobic, electronic, and steric con-
stants”), American Chemical Society, Washington, DC, 1995;
b) values for the morpholino substituent from: J. K. Seydel,
K.-J. Schaper, Chemische Struktur und biologische Aktivität von
Wirkstoffen – Methoden der Quantitativen Struktur-Wirkung-
Analyse, Verlag Chemie, Weinheim, 1979; c) MR values for the
3-substituents of compounds 2 and 14 were calculated by the
incremental procedure described by: S. A. Wildman, G. M.
We are grateful to Gustav Hulthe for purity analysis/HRMS and
to Marie Rydén-Landergren, Tineke Papavoine, and Gunnar
Grönberg for unlimited help and advice on NMR spectroscopy. We
sincerely thank Ruth Bylund and Thomas Antonsson for helpful
suggestions to improve the manuscript.
[23]
[24]
[1] A. D. McNaught, A. Wilkinson (Eds.), IUPAC Compendium of
Chemical Terminology, 2nd ed., Blackwell Scientific Publica-
tions, Oxford, 1997 (http://goldbook.iupac.org/R05243.html).
[2] See, for example: a) G. Jas, I. Freifeld, Method for producing
flupirtine, WO 2010/136113 A1, 2010 (Chem. Abstr. 2010, 153,
643326); b) J.-I. Matsumoto, Y. Takase, Y. Nishimura, Naph-
thyridine derivatives and salts thereof useful as antibacterial
agents, US Patent 4359578, 1979 (Chem. Abstr. 1980, 93,
168305).
Crippen, J. Chem. Inf. Comput. Sci. 1999, 39, 868–873.
[24a]
[25]
[26]
See ref.
and references cited therein.
M. Charton, J. Org. Chem. 1976, 41, 2217–2220, and references
cited therein.
[3] B. Zou, Q. Yuan, D. Ma, Angew. Chem. 2007, 119, 2652; An-
gew. Chem. Int. Ed. 2007, 46, 2598–2601.
[27]
S. Miyazawa, H. Harada, H. Fujisaki, A. Kubota, K. Kodama,
J. Nagakawa, N. Watanabe, K. Oketani, Imidazopyridine com-
pounds, WO 2005/103049 A1, 2005 (Chem. Abstr. 2005, 123,
440408).
M. Nishizawa, T. Iyenaga, T. Kurisaki, H. Yamamoto, M.
Sharfuddin, K. Namba, H. Imagawa, Y. Shizuri, Y. Matsuo,
Tetrahedron Lett. 2007, 48, 4229–4233.
J. P. Wolfe, S. Buchwald, J. Org. Chem. 2000, 65, 1144–1157.
F. Mutterer, C. D. Weis, Helv. Chim. Acta 1976, 59, 222–229.
Y. Hirokawa, T. Horikawa, S. Kato, Chem. Pharm. Bull. 2000,
48, 1847–1853.
A. S. Voisin, A. Bouillon, J.-C. Lancelot, S. Rault, Tetrahedron
2005, 61, 1417–1421.
R. Radinov, K. Chanev, M. Khaimova, J. Org. Chem. 1991,
56, 4793–4796.
R. Todeschini, V. Consonni, Molecular descriptors for chemoin-
formatics, Wiley-VCH, Weinheim, 2009.
A. Verloop, The sterimol approach to drug design, Marcel
Dekker, New York, 1987.
In fact, 23 solvents were used; however, the reactions in EtOH
and iPrOH gave mixtures of transesterification products and
were thus excluded from the list. The outlier result with TEA
as solvent may be explained by precipitation, which was ob-
served in this solvent only.
a) In the data analysis, values of n, ε, and μ were taken from:
J.-L. M. Abboud, R. Notario, Pure Appl. Chem. 1999, 71, 645–
718; b) values of π*, α, β, ET(30), and DN are from: Y. Marcus,
Chem. Soc. Rev. 1993, 22, 409–416; c) values from ref.[37a,37b]
were completed by values of π*, α, and β for N-methylimid-
azole from: M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham,
R. W. J. Taft, J. Org. Chem. 1983, 48, 2877–2887; d) by values
of the refractive index n for N-methylformamide and MeOH
[4] U. Horn, F. Mutterer, C. D. Weis, Helv. Chim. Acta 1976, 59,
211–221.
[5] K. Leonard, J. J. Marugan, P. Raboisson, R. Calvo, J. M.
Gushue, H. K. Koblish, J. Lattanze, S. Zhao, M. D. Cummings,
M. R. Player, A. C. Maroney, T. Lu, Bioorg. Med. Chem. Lett.
2006, 16, 3463–3468.
[6] F. Mutterer, C. D. Weis, Helv. Chim. Acta 1976, 59, 229–235.
[7] A. A. Thomas, Y. Le Huerou, J. De Meese, I. Gunawardana, T.
Kaplan, T. T. Romoff, S. S. Gonzales, K. Condroski, S. A.
Boyd, J. Ballard, B. Bernat, W. DeWolf, M. Han, P. Lee, C.
Lemieux, R. Pedersen, J. Pheneger, G. Poch, D. Smith, F. Sulli-
van, S. Weiler, S. K. Wright, J. Lin, B. Brandhuber, G. Vigers,
Bioorg. Med. Chem. Lett. 2008, 18, 2206–2210.
[8] W. Yang, Y. Wang, J. R. Corte, Org. Lett. 2003, 5, 3131–3134.
[9] Y. M. Choi, N. Kucharczyk, R. D. Sofia, J. Labelled Compd.
Radiopharm. 1987, 24, 1–14.
[10] J. K. Seydel, K.-J. Schaper, E. A. Coats, H. P. Cordes, P. Emig,
J. Engel, B. Kutscher, E. E. Polymeropoulos, J. Med. Chem.
1994, 37, 3016–3022.
[11] M. Oguchi, K. Wada, H. Honma, A. Tanaka, T. Kaneko, S.
Sakakibara, J. Ohsumi, N. Serizawa, T. Fujiwara, H. Horiko-
shi, T. Fujita, J. Med. Chem. 2000, 43, 3052–3066.
[12] S. Schmid, D. Schühle, S. Steinberger, Z. Xin, V. Austel, Syn-
thesis 2005, 18, 3107–3118.
[13] E. J. Jacobsen, J. M. McCall, D. E. Ayer, F. J. VanDoornik,
J. R. Palmer, K. L. Belonga, J. M. Braughler, E. D. Hall, D. J.
Houser, J. Med. Chem. 1990, 33, 1145–1151.
[14] M. Mader, A. de Dios, C. Shih, R. Bonjouklian, T. Li, W.
White, B. L. de Uralde, C. Sánchez-Martinez, M. del Prado, C.
Jaramillo, E. de Diego, L. M. M. Cabrejas, C. Dominguez, C.
Montero, T. Shepherd, R. Dally, J. E. Toth, A. Chatterjee, S.
Pleite, J. Blanco-Urgoiti, L. Perez, M. Barberis, M. J. Lorite, E.
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
Eur. J. Org. Chem. 2012, 6940–6952
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6951