Page 3 of 4
ChemComm
of Pꢀ and Mꢀhelical fibers for the complexes containing DꢀTA
55 nm). Theoretical calculations were undertaken to explain the 60 and LꢀTA respectively while both helices exist in the complexes
further shift in the emission maximum from 520 to 575 nm (∆λ =
effect of protonation on the redꢀshifts in the emission spectra (Fig
S13, S14†). It showed that upon protonation, the HOMO and
LUMO energy gap decreases significantly which accounts for a
higher emission λmax (Table S1†). It may be further noted that the
derived from MꢀTA. Notable redꢀshifts in the emission maxima
are observed as a consequence of protonation and Jꢀaggregation
induced gel formation. Thermal mesophases could also be tuned
depending on the spatial orientation of different TA isomers.
5
systems attain planarity on protonation and these planar aromatic 65 Such tunable systems deserve further research for the generation
surfaces may offer effective πꢀstacking interactions leading to
excellent Jꢀaggregation.
of specific and predictable chiral supramolecular stacks through
chiral induction.
10
Presence of thermotropic mesophases in the preꢀgelators and in
complexes were investigated using differential scanning
calorimetry and polarized optical microscopy (POM). Compound
S.B. thanks J.C. Bose Fellowship (DST) for funding this work.
o
1 alone showed a sharp phaseꢀtransition at 111.3 C for melting
70 Notes and references
and at 102.3 oC for freezing (Fig. S15†). The phaseꢀtransition
a Department of Organic Chemistry, Indian Institute of Science,
Bangalore-560012, India. Fax: +91-80-23600529; Tel: +91-80-
22932664; E-mail: sb@orgchem.iisc.ernet.in
15 temperature of 1+TA showed a decrease of ~7 oC for the heating
cycle and ~11 oC for the cooling cycle (Table S2†). Similar
extent of decrease in the phase transition temperature was also
observed for 2+TA complexes than 2 alone indicating a change in
the supramolecular organization10 in the TA complexes.
20
b Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced
75 Scientific Research, Bangalore-560064, India.
† Electronic Supplementary Information (ESI) available: Experimental
section,
synthesis
and
supporting
figures
(S1ꢀS19).
See
DOI: 10.1039/b000000x/
(a)
(b)
(c)
(d)
1
2
J.ꢀM. Lehn, Angen. Chem. Int. Ed. Engl., 1990, 29, 1304; T. Gulicꢀ
Krzywicki, C. Fouquey, J.ꢀM. Lehn, Proc. Nati. Acad. Sci. USA,
1993, 90, 163; R. Oda, I. Huc, M. Schmutz, S. J. Candau, F. C.
MacKintosh, Nature, 1999, 399, 566; C. C. Lee, C. Grenier, E. W.
Meijer, A. P. H. J. Schenning, Chem. Soc. Rev., 2009, 38, 671; S. J.
George, Z. Tomovic, A. P. H. J. Schenning, E. W. Meijer, Chem.
Commun., 2011, 47, 3451.
S. J. George, R. de Bruijn, Z. Tomovic, B. V. Averbeke, D. Beljonne,
R. Lazzaroni, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem.
Soc., 2012, 134, 17789; H. Nakade, B. J. Jordan, S. Srivastava, H.
Xu, X. Yu, M. A. Pollier, G. Cooke, V. M. Rotello, Supramol.
Chem., 2010, 22, 691; R. Oda, F. Artzner, M. Laguerre, I. Huc, J.
Am. Chem. Soc., 2008, 130, 14705; J. J. D. de Jong, L. N. Lucas, R.
M. Kellogg, J. H. van Esch, B. L. Feringa, Science, 2004, 304, 278;
R. Custelcean, M. D. Ward, Angew. Chem., Int. Ed., 2002, 41, 1724.
B. Adhikari, J. Nanda, A. Banerjee, Soft Matter, 2011, 7, 8913; X.
Zhu, P. Duan, L. Zhang, M. Liu, Chem. Eur. J. 2011, 17, 3429–3437;
S. K. Batabyal, W. L. Leong, J. J. Vittal, Langmuir, 2010, 26, 7464;
C. Bao, R. Lu, M. Jin, P. Xue, C. Tan, G. Liu, Y. Zhao, Org. Biomol.
Chem., 2005, 3, 2508.
80
85
(f)
(e)
(g)
(h)
25
Fig. 3 POM images of (a) 1, (b) 1+LꢀTA, (c) 1+DꢀTA, (d) 1+MꢀTA and
30 (e) 2, (f) 2+LꢀTA, (g) 2+DꢀTA, (h) 2+MꢀTA.
90
POM images showed birefringent textures from 1, 2 and their
TA complexes which were monitored by taking snapshots upon
progressively decreasing temperature of the isotropic melts (Fig.
3, S16ꢀS19†). In case of 1, only a crystalline phase appeared all at
3
95
o
35 once at ~107 C while for 1+LꢀTA, initially a rodꢀlike texture
o
appeared at 120 C followed by another type of smaller domain
o
of distinct morphology at ~110 C and finally a crystalline phase
4
5
S. Bhattacharya, S. K. Samanta, Langmuir, 2009, 25, 8378; M.
George, R. G. Weiss, Acc. Chem. Res., 2006, 39, 489; S.
Bhattacharya, S. K. Samanta, Chem. Eur. J., 2012, 18, 16632.
S.ꢀJ. Yoon, J. H. Kim, J. W. Chung, S. Y. Park, J. Mater. Chem.,
2011, 21, 18971; S. K. Samanta, A. Pal, S. Bhattacharya, Langmuir,
2009, 25, 8567; J. F. Hulvat, M. Sofos, K. Tajima, S. I. Stupp, J. Am.
Chem. Soc., 2005, 127, 366; S. K. Samanta, S. Bhattacharya, J.
Mater. Chem., 2012, 22, 25277.
o
100
105
110
115
120
appeared rapidly at ~83 C. However, 1+DꢀTA showed only the
smaller domain morphology followed by a crystalline phase.
40 Interestingly, 1+MꢀTA revealed focalꢀconic morphology possibly
due to the formation of smectic phase along with smaller
domains.11 The birefringent textures were liquidꢀcrystalline in
nature before appearing the rapidly growing phase starting at ~83
o
o
oC for 1+LꢀTA, ~90 C for 1+DꢀTA and ~85 C for 1+MꢀTA
45 complexes. These observations suggest that the appearance of
smaller domains are predominantly due to the helical fibers (for
1+LꢀTA and 1+DꢀTA) while the focalꢀconic morphology is
possibly due to the ringꢀlike structures of 1+MꢀTA. Interestingly,
an opposite phenomena appeared in case of 2 which showed
50 liquidꢀcrystalline behavior upto ~130 oC while none of the
complexes of TAs with 2 showed any liquidꢀcrystalline behavior,
rather they all showed crystalline phases. Thus the birefringent
textures are dictated by the spatial orientations of TA isomers.
In conclusion, it is shown for the first time, that pyridineꢀend
55 OPVs form supramolecular organogels via molecular recognition
of the chiral forms of TA. The chiral information stored in TA
induces exactly opposite sense of chirality in the complexes for
two optically active TA (Lꢀ and Dꢀ). This leads to the formation
6
7
8
J. Seo, J. W. Chung, E.ꢀH. Jo, S. Y. Park, Chem. Commun., 2008,
2794.
S. J. George, A. Ajayaghosh, P. Jonkheijm, A. P. H. J. Schenning, E.
W. Meijer, Angew. Chem. Int. Ed. 2004, 43, 3422.
S. J. George, Z. Tomovic, M. M. J. Smulders, T. F. A. de Greef, P. E.
L. G. Leclere, E. W. Meijer, A. P. H. J. Schenning, Angew. Chem.
Int. Ed. 2007, 46, 8206; R. Amemiya, M. Mizutani, M. Yamaguchi,
Angew. Chem. Int. Ed., 2010, 49, 1995; M. R. Molla, A. Das, S.
Ghosh, Chem. Commun., 2011, 47, 8934.
9
F. Wurthner, T. E. Kaiser, C. R. SahaꢀMoller, Angew. Chem. Int. Ed.,
2011, 50, 3376; H. Wu, L. Xue, Y. Shi, Y. Chen, X. Li, Langmuir,
2011, 27, 3074.
10 S. K. Samanta, A. Pal, S. Bhattacharya, C. N. R. Rao, J. Mater.
Chem., 2010, 20, 6881; S. K. Samanta, K. S. Subrahmanyam, S.
Bhattacharya, C. N. R. Rao, Chem. Eur., J. 2012, 18, 2890.
11 V. N. Vijayakumar, K. Murugadass, M. L. N. Madhu Mohan, Mol.
Cryst. Liq. Cryst., 2010, 517, 43.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3