In summary, niclosamide and its novel O-alkylamino-tethered derivatives (8, 10, 11 and 12) were discovered with antibacterial
activities against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Among these compounds, 10
(HJC0431) with 4-aminobutyl moiety showed the broad antibacterial activities, effective against 6 strains. In vitro checkerboard
and time-kill course studies demonstrated the synergistic effect of the screened compounds with COL against the corresponding
strains with various degrees. These promising data support the further optimization potential of O-alkylamino-tethered derivatives
as new and unique antibiotics against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates.
Acknowledgements
This work was supported by UTMB Technology Commercialization Program, and Sanofi Innovation Awards (iAwards), John
Sealy Memorial Endowment Fund, and Institute for Translational Sciences (ITS) at UTMB, Plan Nacional de I + D + i 2013-2016
and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía,
Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0009), cofinanced by
European Development Regional Fund “A way to achieve Europe”, Operative program Intelligent Growth 20142020, the Instituto
de Salud Carlos III, Proyectos de Investigación en Salud (PI15/00489) and Proyectos de Desarrollo Tecnológico en Salud
(DTS17/00130), the Spanish Adenovirus Network (AdenoNet, BIO2015/68990-REDT), and the program “Nicolás Monardes” (C-
0059-2018) Servicio Andaluz de Salud, Junta de Andalucía.
References and notes
1. Rice, L. B. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010; 31 Suppl 1: S7-
10.
2. Rice, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197(8): 1079-
1081.
3. Pendleton, J. N.; Gorman, S. P..Gilmore, B. F. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013; 11(3): 297-308.
4. Croft, A. C.; D'Antoni, A. V..Terzulli, S. L. Update on the antibacterial resistance crisis. Med Sci Monit. 2007; 13(6): RA103-118.
5. Nordmann, P.; Naas, T..Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17(10): 1791-1798.
6. Tzouvelekis, L. S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P. T..Daikos, G. L. Carbapenemases in Klebsiella pneumoniae and other
Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012; 25(4): 682-707.
7. Biswas, S.; Brunel, J. M.; Dubus, J. C.; Reynaud-Gaubert, M..Rolain, J. M. Colistin: an update on the antibiotic of the 21st century. Expert Rev
Anti Infect Ther. 2012; 10(8): 917-934.
8. Sader, H. S.; Castanheira, M.; Flamm, R. K.; Mendes, R. E.; Farrell, D. J..Jones, R. N. Tigecycline activity tested against carbapenem-resistant
Enterobacteriaceae from 18 European nations: results from the SENTRY surveillance program (2010-2013). Diagn Microbiol Infect Dis. 2015;
83(2): 183-186.
9. Kumar, M. Colistin and Tigecycline Resistance in Carbapenem-Resistant Enterobacteriaceae: Checkmate to Our Last Line Of Defense. Infect
Control Hosp Epidemiol. 2016; 37(5): 624-625.
10. Marchaim, D.; Chopra, T.; Pogue, J. M., et al. Outbreak of colistin-resistant, carbapenem-resistant Klebsiella pneumoniae in metropolitan Detroit,
Michigan. Antimicrob Agents Chemother. 2011; 55(2): 593-599.
11. Andrews, P.; Thyssen, J..Lorke, D. The biology and toxicology of molluscicides, Bayluscide. Pharmacol Ther. 1982; 19(2): 245-295.
12. Al-Hadiya, B. M. Niclosamide: comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2005; 32: 67-96.
13. Weinbach, E. C..Garbus, J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature. 1969; 221(5185): 1016-1018.
14. Williamson, R. L..Metcalf, R. L. Salicylanilides: a new group of active uncouplers of oxidative phosphorylation. Science. 1967; 158(3809): 1694-
1695.
15. Frayha, G. J.; Smyth, J. D.; Gobert, J. G..Savel, J. The mechanisms of action of antiprotozoal and anthelmintic drugs in man. General
Pharmacology: The Vascular System. 1997; 28(2): 273-299.
16. Li, Y.; Li, P.-K.; Roberts, M. J.; Arend, R. C.; Samant, R. S..Buchsbaum, D. J. Multi-targeted therapy of cancer by niclosamide: A new
application for an old drug. Cancer Lett. 2014; 349(1): 8-14.
17. Chen, W.; Mook, R. A.; Premont, R. T..Wang, J. Niclosamide: Beyond an antihelminthic drug. Cell Signal. 2018; 41: 89-96.
18. Fonseca, B. D.; Diering, G. H.; Bidinosti, M. A., et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in
control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem. 2012; 287(21): 17530-17545.
19. Ippolito, J. E.; Brandenburg, M. W.; Ge, X., et al. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and
Susceptibility to the Mitochondrial Inhibitor Niclosamide. PLoS One. 2016; 11(7): e0159675.
20. Balgi, A. D.; Fonseca, B. D.; Donohue, E., et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1
signaling. PLoS One. 2009; 4(9): e7124.
21. Ren, X.; Duan, L.; He, Q., et al. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med
Chem Lett. 2010; 1(9): 454-459.
22. Chen, M.; Wang, J.; Lu, J., et al. The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry. 2009; 48(43): 10267-10274.
23. Jin, Y.; Lu, Z.; Ding, K., et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-
kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010; 70(6): 2516-2527.
24. Wang, A. M.; Ku, H. H.; Liang, Y. C.; Chen, Y. C.; Hwu, Y. M..Yeh, T. S. The autonomous notch signal pathway is activated by baicalin and
baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem. 2009; 106(4): 682-692.
25. Li, Z.; Brecher, M.; Deng, Y.-Q., et al. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction.
Cell Res. 2017; 27: 1046.
26. Chen, H.; Yang, Z.; Ding, C., et al. Discovery of O-Alkylamino Tethered Niclosamide Derivatives as Potent and Orally Bioavailable Anticancer
Agents. ACS Med Chem Lett. 2013; 4(2): 180-185.
1
27. Spectra data of the representative compound: (S)-2-(2-Aminobutoxy)-5-chloro-N-(2-chloro-4-nitrophenyl)benzamide (8). Pale yellow solid. H
NMR (600 MHz, DMSO-d6) δ 8.51 (d, J = 9.1 Hz, 1H), 8.43 (d, J = 2.4 Hz, 1H), 8.28 (dd, J = 9.1, 2.6 Hz, 1H), 7.92 (d, J = 2.8 Hz, 1H), 7.64
(dd, J = 8.9, 2.8 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 4.24 (dd, J = 10.2, 5.0 Hz, 1H), 4.06 (dd, J = 10.1, 7.5 Hz, 1H), 3.02 (s, 1H), 1.56 – 1.48 (m,
1H), 1.32 – 1.26 (m, 1H), 0.91 (t, J = 7.5 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 162.7, 155.6, 143.3, 141.2, 133.4, 130.4, 125.1, 124.8,