Alba Dꢀaz-Rodrꢀguez et al.
COMMUNICATIONS
Acknowledgements
Catal. 2009, 351, 1187–1209, and references cited there-
in.
[10] a) S. Rodrꢀguez-Couto, J. L. Toca-Herrera, Biotechnol.
Adv. 2006, 24, 500–513; b) F. Xu, Ind. Biotechnol. 2005,
1, 38–50; c) P. Widsten, A. Kandelbauer, Enzyme
Microb. Technol. 2008, 42, 293–307.
[11] a) M. Fabbrini, C. Galli, P. Gentili, D. Macchitella, Tet-
rahedron Lett. 2001, 42, 7551–7553; b) I. W. C. E.
Arends, Y.-X. Li, R. Ausan, R. A. Sheldon, Tetrahedron
2006, 62, 6659–6665.
This research is part of BIONEXGEN project (grant agree-
ment 266025) sponsored by the European Union inside the
7th Framework Programme; (FP7 2007-2013). I.L. thanks the
Spanish MICINN for personal funding inside the Ramꢀn y
Cajal Program.
References
[1] Modern Oxidation Methods, 2nd edn., (Ed.: J.-E. Bꢄck-
vall), Wiley-VCH, Weinheim, 2011.
[12] Blank experiments were performed in the absence of
laccase or TEMPO. In all cases only starting material
was detected.
[13] For biofuel applications: a) I. Horvꢁth, H. Mehdi, V.
Fꢁbos, L. Boda, L. T. Mika, Green Chem. 2008, 10,
238–242; b) J. Bond, D. M. Alonso, W. Dong, R. M.
West, J. A. Dumesic, Science 2010, 327, 1110–1114. As
eco-friendly solvent: c) I. T. Horvꢁth, Green Chem.
2008, 10, 1024–1028. For biodegradable polymers: d) Y.
Shibasaki, H. Sanda, M. Yokoi, F. Sanda, T. Endo,
Macromolecules 2000, 33, 4316–4320; e) A.-C. Alberts-
son, I. K. Varma, Biomacromolecules 2003, 4, 1466–
1486; f) J.-P. Lange, J. Z. Vestering, R. J. Haan, Chem.
Commun. 2007, 3488–3490.
[14] Other TEMPO systems were employed under aqueous
conditions (for instance NaOCl/TEMPO, NaOCl2/
NaOCl/TEMPO, CuCl/TEMPO or CuBr2/TEMPO),
observing lower conversions in all cases. Selective oxi-
dations when using diol 4 were not feasible. Moreover,
other oxidized by-products were formed (for more de-
tails see Supporting Information).
[2] a) T. Nishimura, T. Onoue, K. Ohe, S. Uemura, J. Org.
Chem. 1999, 64, 6750–6755; b) A. Dijksman, A.
Marino-Gonzꢁlez, A. M. Payeras, I. W. C. E. Arends,
R. A. Sheldon, J. Am. Chem. Soc. 2001, 123, 6826–
6833; c) K. M. Gligorich, M. S. Sigman, Chem.
Commun. 2009, 3854–3867; d) Y. Endo, J.-E. Bꢄckvall,
Chem. Eur. J. 2011, 17, 12596–12601; e) F. Cardona, C.
Parmeggiani, Green Chem. 2012, 14, 547–564.
[3] a) M. F. Semmelhack, C. R. Schmid, D. A. Cortꢅs, C. S.
Chou, J. Am. Chem. Soc. 1984, 106, 3374–3376; b) I. E.
Markꢆ, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J.
Urch, Science 1996, 274, 2044–2046; c) P. Gamez,
I. W. C. E. Arends, R. A. Sheldon, J. Reedijk, Adv.
Synth. Catal. 2004, 346, 805–811.
[4] J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133,
16901–16910.
[5] a) G.-J. ten Brink, I. W. C. E. Arends, R. A. Sheldon,
Science 2000, 287, 1636–1639; b) R. A. Sheldon,
I. W. C. E. Arends, G.-J. ten Brink, A. Dijksman, Acc.
Chem. Res. 2002, 35, 774–781; c) Green Chemistry and
Catalysis, (Eds.: R. A. Sheldon, I. W. C. E. Arends, U.
Hanefeld), Wiley-VCH, Weinheim, 2007.
[15] a) F. DꢈAcunzo, P. Baiocco, M. Fabbrini, C. Galli, P.
Gentini, Eur. J. Org. Chem. 2002, 4195–4201; b) S. A.
ˇ
˙
Tromp, I. Matijosyte, R. A. Sheldon, I. W. C. E. Arends,
G. Mul, M. T. Kreutzer, J. A. Moulijn, S. de Vries,
ChemCatChem 2010, 2, 827–833.
[6] a) W. Kroutil, H. Mang, K. Edegger, K. Faber, Adv.
Synth. Catal. 2004, 346, 125–142; b) Modern Biooxida-
tion. Enzymes, Reactions and Applications, (Eds.: R. D.
Schmid, V. B. Urlacher), Wiley-VCH, Weinheim, 2007;
c) F. Hollmann, I. W. C. E. Arends, K. Buehler, A.
Schallmey, B. Bꢇhler, Green Chem. 2011, 13, 226–265;
d) N. J. Turner, Chem. Rev. 2011, 111, 4073–4087; e) D.
Romano, R. Villa, F. Molinari, ChemCatChem 2012, 4,
739–749.
[7] a) E. I. Solomon, U. M. Sundaram, T. E. Machonkin,
Chem. Rev. 1996, 96, 2563–2605; b) H. Claus, Arch. Mi-
crobiol. 2003, 179, 145–150; c) S. G. Burton, Curr. Org.
Chem. 2003, 7, 1317–1331; d) S. Riva, Trends Biotech-
nol. 2006, 24, 219–226.
[8] a) K. Piontek, M. Antorini, T. Choinowski, J. Biol.
Chem. 2002, 277, 37693–37699; b) T. Bertrand, C. Joli-
valt, P. Briozzo, E. Caminade, N. Joly, C. Madza, C.
Mougin, Biochemistry 2002, 41, 7325–7333; c) C. J.
Rodgers, C. F. Blanford, S. R. Giddens, P. Skamnioti,
F. A. Armstrong, S. J. Gurr, Trends Biotechnol. 2010,
28, 63–72; d) D. Matꢅ, E. Garcꢀa-Ruiz, S. Camarero, M.
Alcalde, Curr. Genomics 2011, 12, 113–122; e) V.
Robert, Y. Mekmouche, P. R. Pailley, T. Tron, Curr. Ge-
nomics 2011, 12, 123–129.
[16] N. Rꢀos-Lombardꢀa, V. Gotor-Fernꢁndez, V. Gotor, J.
Org. Chem. 2011, 76, 811–819.
[17] In order to obtain diol 14, a binary NaBH4/BF3 system
was employed as borane source to reduce the bromi-
nated diacid. See: S.-D. Cho, Y.-D. Park, J.-J. Kim, J. R.
Falck, Y.-J. Yoon, Bull. Korean Chem. Soc. 2004, 25,
407–409.
[18] Lactones 17–23 can be obtained without bubbling O2 in
an open-to-air tube finding similar yields as with bub-
bling oxygen, however the processes require longer re-
action times (see Supporting Information).
[19] J. J. Beck, S.-C. Chou, J. Nat. Prod. 2007, 70, 891–900.
[20] a) N. Durꢁn, M. A. Rosa, A. DꢈAnnibale, C. Gianfreda,
Enzyme Microb. Technol. 2002, 31, 907–931; b) R. A.
Sheldon, Adv. Synth. Catal. 2007, 349, 1289–1307; c) U.
Hanefeld, L. Gardossi, E. Magner, Chem. Soc. Rev.
2009, 38, 453–468; d) C. Garcia-Galan, A. Berenguer-
Murcia, R. Fernandez-Lafuente, R. C. Rodrigues, Adv.
Synth. Catal. 2011, 353, 2885–2904; e) D. N. Tran, K. J.
Balkus Jr, ACS Catal. 2011, 1, 956–968.
[21] The laccase-CLEA was obtained from CLEA Technol-
ogies B.V. and used as such (batch 12652). See also:
ˇ
˙
a) I. Matijosyte, I. W. C. E. Arends, S. de Vries, R. A.
Sheldon, J. Mol. Catal. B: Enzym. 2010, 62, 142–148;
b) R. A. Sheldon, Appl. Microbiol. Biotechnol. 2011,
92, 467–477.
[9] a) D. Monti, C. Chirivi, S. Riva, Chim. Oggi 2008, 26,
16–18; b) S. Witayakran, A. J. Ragauskas, Adv. Synth.
3408
ꢂ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2012, 354, 3405 – 3408