ORGANIC
LETTERS
2013
Vol. 15, No. 4
936–939
Palladium-Catalyzed Trifluoroethylation
of Terminal Alkynes with 1,1,1-Trifluoro-
2-iodoethane
Yi-Si Feng,† Chuan-Qi Xie,† Wen-Long Qiao,† and Hua-Jian Xu*,†,‡
School of Chemical Engineering, School of Medical Engineering, Hefei University
of Technology, Key Laboratory of Advanced Functional Materials and Devices,
Anhui Province, Hefei 230009, P. R. China
Received January 12, 2013
ABSTRACT
An efficient CspꢀCH2CF3 bond-forming reaction via Pd-catalyzed 2,2,2-trifluoroethylation of aryl and alkyl terminal alkynes has been developed.
This protocol proceeds under mild conditions using the readily available and cheap reagent CF3CH2I as the source of the CH2CF3 group. Various
terminal aryl alkynes as well as alkylacetylenes can be transformed into the corresponding trifluoroethylated products in good-to-excellent yields.
The method is tolerant of carbonyl, nitro, ester, cyano, and even formyl groups.
The incorporation of fluorine atoms into organic mole-
cules can profoundly influence their chemical and biological
activities, such as lipophilicity, metabolic stability, and bio-
availability.1 As a result, much attention has been paid to
the development of an appropriate method for the incor-
poration of fluoroalkyl groups into functional organic
structures.2 In this context, considerable progress has been
made in the use of 1,1,1-trifluoro-2-iodoethane (CF3CH2I)
to form Csp ꢀCH2CF3 or Csp ꢀCH2CF3 bonds.3 For in-
stance, McLoughlin and Thrower groups reported Cu(0)-
promoted 2,2,2-trifluoroethylation reactions of iodoaromatic
compounds with CF3CH2I in 1969.4 Recently, the Hu5 and
Zou6 groups respectively reported the palladium-catalyzed
† Hefei University of Technology.
‡ Key Laboratory of Advanced Functional Materials and Devices.
(1) Recent reviews: (a) Uneyama, K.; Katagiri, T.; Amii, H. Acc.
Chem. Res. 2008, 41, 817. (b) Hagmann, W. K. J. Med. Chem. 2008, 51,
4359. (c) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (d) Hu, J.;
Zhang, W.; Wang, F. Chem. Commun. 2009, 7465. (e) Lectard, S.;
Hamashima, Y.; Sodeoka, M. Adv. Synth. Catal. 2010, 352, 2708. (f)
Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455. (g)
Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(2) Recent examples: (a) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang,
Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679. (b) Zhu, R.;
Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462. (c) Parsons, A. T.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (d) Cho, E. J.;
Buchwald, S. L. Org. Lett. 2011, 13, 6552. (e) Ye, Y.; Sanford, M. S.
J. Am. Chem. Soc. 2012, 134, 9034. (f) Ye, Y.; Lee, S.; Sanford, M. S. Org.
Lett. 2011, 13, 5464. (g) Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S.
J. Am. Chem. Soc. 2011, 133, 7577. (h) Loy, R. N.; Sanford, M. S. Org.
Lett. 2011, 13, 2548. (i) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am.
Chem. Soc. 2010, 132, 2878. (j) Janson, P. G.; Ghoneim, I.; Ilchenko,
N. O.;Szabo, K. J. Org. Lett. 2012, 14, 2882. (k) Xu, J.;Fu, Y.;Luo, D.-F.;
Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc.
2011, 133, 15300. (l) Xu, J.; Xiao, B.; Xie, C.-Q.; Luo, D.-F.; Liu, L.; Fu,
Y. Angew. Chem., Int. Ed. 2012, 51, 12551. (m) Xu, J.; Luo, D.-F.; Xiao,
B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300.
(n)Hu, M.-Y.;Ni, C.-F.; Hu, J.-B. J. Am. Chem. Soc. 2012, 134, 15257. (o)
Shen, X.; Zhang, W.; Ni, C.-F.; Gu, Y.-C.; Hu, J.-B. J. Am. Chem. Soc.
2012, 134, 16999. (p) Zhao, Y.-C.; Huang, W.-Z.; Zheng, J.; Hu, J.-B.Org.
Lett. 2011, 13, 5342. (q) He, Z.-B.; Luo, T.; Hu, M.-Y.; Cao, Y.-J.; Hu,
J.-B. Angew. Chem., Int. Ed. 2012, 51, 3944. (r) Chu, L.-L.; Qing, F.-L.
J. Am. Chem. Soc. 2010, 132, 7262. (s) Morandi, B.; Carreira, E. M.
Angew. Chem., Int. Ed. 2010, 49, 938.
3
2
(3) (a) Solladie-Cavallo, A.; Suffert, J. Tetrahedron Lett. 1984, 25,
1897. (b) Solladie-Cavallo, A.; Farkhani, D.; Fritz, S.; Lazrak, T.;
Suffert, J. Tetrahedron Lett. 1984, 25, 4117. (c) Solladie-Cavallo, A.;
Suffert, J. Synthesis 1985, 659. (d) Schneider, M. R. J. Med. Chem. 1986,
29, 1494. (e) Solladi-Cavallo, A.; Farkhani, D.; Dreyfuss, A. C.; Sanch,
F. Bull. Soc. Chim. Fr. 1986, 6, 906. (f) Matsubara, S.; Mitani, M.;
Utimoto, K. Tetrahedron Lett. 1987, 28, 5857. (g) Hammond, G. B.;
Plevey, R. G.; Sampson, P.; Tatlow, J. C. J. Fluorine Chem. 1988, 40, 81.
(h) Long, Z.-Y.; Chen, Q.-Y. Tetrahedron Lett. 1998, 39, 8487. (i)
Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398. (j) Balsells,
J.; Waters, M.; Hansen, K.; Kieczykowski, G. R.; Song, Z. J. Synthesis
2007, 2779. (k) Takai, K.; Takagi, T.; Baba, T.; Kanamori, T. J. Fluorine
Chem. 2007, 128, 120.
(4) McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.
(5) Zhao, Y.-C.; Hu, J.-B. Angew. Chem., Int. Ed. 2012, 51, 1033.
(6) Liang, A.-P.; Li, X.-J.; Liu, D.-F.; Li, J.-Y.; Zou, D.-P.; Wu,
Y.-J.; Wu, Y.-S. Chem. Commun. 2012, 48, 8273.
r
10.1021/ol400099h
Published on Web 02/01/2013
2013 American Chemical Society