H. Saneyoshi et al. / Tetrahedron Letters 54 (2013) 1080–1083
1083
2. (a) Rohs, R.; Jin, X.; West, S. M.; Joshi, R.; Honig, B.; Mann, R. S. Annu. Rev.
Biochem. 2010, 79, 233–269; (b) Thomas, J. R.; Hergenrother, P. J. Chem. Rev.
2008, 108, 1215–1224.
3. (a) Park, S.; Sugiyama, H. Angew. Chem., Int. Ed. 2010, 49, 3870–3878; (b) Li, X.;
Liu, D. R. J. Am. Chem. Soc. 2003, 125, 10188–10189.
4. Eckstein, F. Antisense Nucleic Acid Drug Dev. 2000, 10, 117–121.
5. Yu, D.; Kandimalla, E. R.; Roskey, A.; Zhao, Q.; Chen, L.; Chen, J.; Agrawal, S.
Bioorg. Med. Chem. 2000, 8, 275–284; (b) Stivers, J. T.; Nawrot, B.; Jagadeesh, G.
J.; Stec, W. J.; Shuman, S. Biochemistry 2000, 39, 5561–5572; (c) Burgers, P. M.;
Eckstein, F.; Hunneman, D. H. J. Biol. Chem. 1979, 254, 7476–7478.
6. (a) Oka, N.; Yamamoto, M.; Sato, T.; Wada, T. J. Am. Chem. Soc. 2008, 130,
16031–16037; (b) Oka, N.; Kondo, T.; Fujiwara, S.; Maizuru, Y.; Wada, T. Org.
Lett. 2009, 11, 967–970.
material to a subsequent cyclization reaction using bi-functional
linkers. The current reaction involves the simple chiral generation
reaction of an achiral phosphorous atom. It is envisaged that the
reaction will be microenvironment dependent when conducted in
the presence of a target strand or other nucleic acid binding materi-
als such as distamycin antibiotics and intercalators. Furthermore,
this reaction could represent a new method for monitoring nucleic
acid hybridization and nucleic acid–ligand interaction by 31P NMR.
Further studies of this reaction in the presence of different oligonu-
cleotide strands are currently underway.
7. (a) Bjergårde, K.; Dahl, O. Nucleic Acids Res. 1991, 19, 5843–5850; (b) Marshall,
W. S.; Beaton, G.; Stein, C. A.; Matsukura, M.; Caruthers, M. H. Proc. Natl. Acad.
Sci. U.S.A. 1992, 89, 6265–6269; (c) Marshall, W. S.; Caruthers, M. H. Science
1993, 259, 1564–1570.
Acknowledgments
8. Sukeda, M.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2000, 65, 8988–8996.
9. Yu, W.; Mei, Y. Org. Lett. 2004, 19, 3217–3219.
10. (a) Peake, S. C.; Fild, M.; Schmutzler, R.; Harris, R. K.; Nichols, J. M.; Rees, R. G. J.
Chem. Soc., Perkin Trans. 2 1972, 380–385; (b) Okruszek, A.; Sierzchala, A.;
Sochacki, M.; Stec, W. J. Tetrahedron Lett. 1992, 49, 7585–7588.
H.S., H.A., and Y.I. were financially supported by Ministry of
Education, Culture, Sports, Science and Technology (MEXT) and
New Energy and Industrial Technology Development Organization
(NEDO). We are grateful for the support received from the Brain
Science Institute (BSI) Research Resource Center for mass spectrum
analysis.
11. Miller, G. P.; Silverman, A. P.; Kool, E. T. Bioorg. Med. Chem. 2008, 16, 56–64.
ꢀ
12. LRMS data for intermediate 80: Cl: calcd for (C42H44ClN5O12PS2
)
[MꢀH]ꢀ
940.18, found 940.07; Br: calcd for (C42H46BrN5O12PS2+) [M+H]+ 986.15, found
986.13; I: calcd for (C42H44IN5O12PS2ꢀ) [MꢀH]ꢀ 1032.12, found 1031.99.
13. Post cyclization reaction for the synthesis of
9 under aqueous conditions:
Supplementary data
Compound 8 (30 mg, 29
lmol) was dissolved in PBS–CH3CN (15 mL, 1:1, v/
v). The iodo acetic acid NHS ester (12 mg, 42
lmol) was then added and the
resulting mixture stirred at, rt for 6 h. The reaction mixture was diluted with
EtOAc and washed with H2O. The organic solution was dried (Na2SO4), filtered
and evaporated in vacuo. The residue was purified by column chromatography
eluting with CHCl3/MeOH (10:1) to give 9 (17 mg, 63%). 1H NMR (400 MHz,
Supplementary data associated with this article can be found, in
DMSO-d6)
d 11.53–11.34 (3H, m), 7.62–7.26 (15H, m), 6.94–6.92 (2H, d,
J = 8.69), 6.23–6.21 (1H, m), 5.93 (1H, t, J = 9.65), 5.66–5.32 (2H, m), 4.80–4.24
(4H, m), 4.11–3.72 (5H, m), 3.51–3.42 (2H, m), 3.17–2.98 (2H, m), 2.24–2.08
(2H, m), 1.79 (3H, s); 31P NMR (DMSO-d6) d 92.9, 91.8; HRMS (ESI) calcd for
(C42H44N5NaO12PS2+) [M+Na]+ 928.2058, found 928.2066.
References and notes
1. (a) Wang, S.; Furchtgott, L.; Huang, K. C.; Shaevitz, J. W. Proc. Natl. Acad. Sci.
U.S.A. 2012, 109, E595–604; (b) Moriuchi, T.; Hirao, T. Acc. Chem. Res. 2010, 43,
1040–1051.