Organic Letters
Letter
from cis to trans very quickly.7 However, DFT calculations have
suggested a lower barrier for cis to trans conversion for both AB
radical anion and radical cation.21 To probe whether the AB
radical cation generated independently would lead to isomer-
ization of cis to trans, N-methylacridinium iodide was selectively
excited (Corning 7−60 band-pass filter, 320−400 nm) in the
presence of cis-3@OA2. Indeed, isomerization from cis to trans
occurred, suggesting that the AB radical cation also preferentially
isomerizes from cis to trans (Figure S23).31,32 Thus, based on
our’s and literature results, one can not unequivocally state
whether AB acts as the electron donor or acceptor with respect to
AuNP during thermal catalytic isomerization. Further work is
needed to narrow down the mechanism and identify the nature
of the radical ion. We contemplate a mechanism involving eT as
illustrated in Figure 7.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
V.R. thanks the National Science Foundation (CHE-1411458)
for financial support.
■
REFERENCES
■
(1) Ramamurthy, V. Acc. Chem. Res. 2015, 48, 2904−2917.
(2) Parthasarathy, A.; Kaanumalle, L. S.; Ramamurthy, V. Org. Lett.
2007, 9, 5059.
(3) Baldridge, A.; Samanta, S. R.; Jayaraj, N.; Ramamurthy, V.; Tolbert,
L. M. J. Am. Chem. Soc. 2010, 132, 1498.
(4) Baldridge, A.; Samanta, S. R.; Jayaraj, N.; Ramamurthy, V.; Tolbert,
L. M. J. Am. Chem. Soc. 2011, 133, 712.
(5) Rau, H.; Luddecke, E. J. Am. Chem. Soc. 1982, 104, 1616.
̈
(6) Rau, H. J. Photochem. 1984, 26, 221.
(7) Goulet-Hanssens, A.; Utecht, M.; Mutruc, D.; Titov, E.; Schwarz,
J.; Grubert, L.; Bleg
139, 335.
́
er, D.; Saalfrank, P.; Hecht, S. J. Am. Chem. Soc. 2017,
(8) Porel, M.; Jockusch, S.; Parthasarathy, A.; Rao, V. J.; Turro, N. J.;
Ramamurthy, V. Chem. Commun. 2012, 48, 2710.
(9) Porel, M.; Chuang, C.-H.; Burda, C.; Ramamurthy, V. J. Am. Chem.
Soc. 2012, 134, 14718.
(10) Thomas, K. G.; Kamat, P. V. Acc. Chem. Res. 2003, 36, 888.
(11) Dube, H.; Ams, M. R.; Rebek, J., Jr. J. Am. Chem. Soc. 2010, 132,
9984.
(12) Lux, J.; Rebek, J., Jr. Chem. Commun. 2013, 49, 2127.
(13) Jayaraj, N.; Zhao, Y.; Parthasarathy, A.; Porel, M.; Liu, R. S. H.;
Ramamurthy, V. Langmuir 2009, 25, 10575.
Figure 7. Cartoon representation of thermal isomerization of cis-ABs (a)
with OA and (b) with OA in the presence of AuNPs.
(14) Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. 2004, 126, 11408.
(15) Bandara, H. M. D.; Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809.
(16) Saltiel, J.; Charlton, J. L. In Rearrangements in Ground and Excited
States; de Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 3, p 25.
(17) Saltiel, J.; Sun, Y.-P. In Photochromism: Molecules and Systems;
Durr, H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam, 1990; p 64.
(18) Lu, Y.-C.; Diau, E. W.-G.; Rau, H. J. Phys. Chem. A 2005, 109,
2090.
(19) Samanta, S. R.; Parthasarathy, A.; Ramamurthy, V. Photochem.
Photobiol. Sci. 2012, 11, 1652.
(20) Hallett-Tapley, G. L.; D’Alfonso, C.; Pacioni, N. L.; McTiernan,
́ ́
C. D.; Gonzalez-Bejar, M.; Lanzalunga, O.; Alarcon, E. I.; Scaiano, J. C.
Chem. Commun. 2013, 49, 10073.
(21) Titov, E.; Lysyakova, L.; Lomadze, N.; Kabashin, A. V.; Saalfrank,
P.; Santer, S. J. Phys. Chem. C 2015, 119, 17369.
(22) Yoon, J. H.; Yoon, S. Phys. Chem. Chem. Phys. 2011, 13, 12900.
(23) Simoncelli, S.; Aramendia, P. F. Catal. Sci. Technol. 2015, 5, 2110.
(24) Shin, K.-H.; Shin, E. J. Bull. Korean Chem. Soc. 2008, 29, 1259.
(25) Frens, G. Nature, Phys. Sci. 1973, 241, 20.
The studies presented here on AB reinforce the utility of
confined space in controlling reactions including the excited and
ground state chemistry of neutral molecules as well as reactive
intermediates. Results presented above on thermal isomerization
of cis-azobenzenes@OA2 to trans (a) highlight the importance of
consideration of the structure of the host−guest complex as a
whole rather than the free guest’s alone in predicting the course
of a reaction in confined spaces, (b) stress how minor variations
in structure with no influence in isotropic solution affect the
chemistry in a confined space, and (c) emphasize that the
mechanism and the product formed within a supramolecular
assembly are governed by the environment instead of by the
intrinsic reactivity of the free molecule. The revealed possibility
of eT-mediated reactions within a capsule opens new avenues
which we plan to explore further.
(26) Hohnstedt, L. F.; Miniatas, B. O.; Waller, C. M. Anal. Chem. 1965,
37, 1163.
(27) Colloidal Gold: Principles, Methods and Applications; Hyatt, M. A.,
Ed.; Academic: New York, 1989; Vol. 3.
(28) Turkevich, J.; Stevenson, P. C.; Hillier, J. A. Discuss. Faraday Soc.
1951, 11, 55.
(29) Liz-Marzan, L. M. Langmuir 2006, 22, 32.
(30) Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209.
(31) Lewis, F. D.; Bedell, A. M.; Dykstra, R. E.; Elbert, J. E.; Gould, I.
R.; Farid, S. J. Am. Chem. Soc. 1990, 112, 8055.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
1
Experimental procedure, H NMR spectra of the host−
guest complexes, absorption and 1H NMR spectra of the
UV and visible light irradiated samples, AuNP-catalyzed
samples and samples kept in the dark, characterization of
(32) Lewis, F. D.; Kojima, M. J. Am. Chem. Soc. 1988, 110, 8664.
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX