Concise Article
MedChemComm
both hydrogen bonding and hydrophobic interactions at this 13 J. D. Eskew, T. Sadikot, P. Morales, A. Duren, I. Dunwiddie,
location of the Hsp90 C-terminal binding pocket.
M. Swink, X. Zhang, S. Hembruff, A. Donnelly,
R. A. Rajewski, B. S. J. Blagg, J. R. Manjarrez, R. L. Matts,
J. M. Holzbeierlein and G. A. Vielhauer, BMC Cancer, 2011,
11, 468.
Conclusion
In conclusion, a series of 1,2,3-triazole side chain containing
analogues that contain the coumarin or biphenyl backbone
were designed, synthesized and evaluated for antiproliferative
activities against a panel of breast, HNSCC, and prostate cancer
cell lines. Compounds manifesting nanomolar activity were
identied through preliminary SAR studies and their Hsp90
inhibitory activity conrmed by Western blot analysis. The
improved Hsp90 inhibitory activities exhibited by these
compounds might result from increased hydrogen bonding
properties on the amide side chain when connected to a
hydrophobic appendage, or from the conformational rigidity
due to the incorporation of 1,2,3-triazole which directs the
hydrophobic appendage into the hydrophobic pocket. These
observations are expected to aid in the development of more
potent Hsp90 C-terminal inhibitors, and such studies will be
reported in due course.
14 J. M. McConnell, L. D. Alexander and S. R. McAlpine, Bioorg.
Med. Chem. Lett., 2014, 24, 661–666.
15 V. C. Ardi, L. D. Alexander, V. A. Johnson and S. R. McAlpine,
ACS Chem. Biol., 2011, 6, 1357–1367.
16 L. B. Peterson and S. J. Brian, Future Med. Chem., 2009, 1,
267–283.
17 H. Zhao and B. S. J. Blagg, Inhibitors of Molecular
Chaperones as Therapeutic Agents, RSC Drug Discovery
Ser., 2014, 259–301.
18 M. G. Marcu, T. W. Schulte and L. Neckers, J. Natl. Cancer
Inst., 2000, 92, 242.
19 X. M. Yu, G. Shen, L. Neckers, H. Blake, J. Holzbeierlein,
B. Cronk and B. S. J. Blagg, J. Am. Chem. Soc., 2005, 127,
12778–12779.
20 J. A. Burlison, L. Neckers, A. B. Smith, A. Maxwell and
B. S. J. Blagg, J. Am. Chem. Soc., 2006, 128, 15529–15536.
21 J. A. Burlison, C. Avila, G. Vielhauer, D. J. Lubbers,
J. Holzbeierlein and B. S. J. Blagg, J. Org. Chem., 2008, 73,
2130–2137.
Acknowledgements
We gratefully acknowledge nancial support of this project by
the NIH/NCI (CA120458 and CA167079) and University of
Michigan Comprehensive Cancer Center CCSG Development
Grant (MSC).
22 H. P. Zhao, B. R. Kusuma and B. S. J. Blagg, ACS Med. Chem.
Lett., 2010, 1, 311–315.
23 H. P. Zhao, A. C. Donnelly, B. R. Kusuma, G. E. L. Brandt,
D. Brown, R. A. Rajewski, G. Vielhauer, J. Holzbeierlein,
M. S. Cohen and B. S. J. Blagg, J. Med. Chem., 2011, 54,
3839–3853.
References
24 H. P. Zhao and B. S. J. Blagg, Bioorg. Med. Chem. Lett., 2013,
23, 552–557.
1 X. An, A. K. Tiwari, Y. Sun, P.-R. Ding, C. R. Ashby, Jr and
Z.-S. Chen, Leuk. Res., 2010, 34, 1255–1268.
2 M. Henkes, H. van der Kuip and W. E. Aulitzky, Ther. Clin.
Risk Manage., 2008, 4, 163–187.
3 C. Roche-Lestienne and C. Preudhomme, Hematologie, 2007,
13, 43–53.
4 X. Lu, L. Xiao, L. Wang and D. M. Ruden, Biochem.
Pharmacol., 2012, 83, 995–1004.
5 K. Jhaveri and S. Modi, in Advances in Pharmacology, ed. S. M.
S. Keiran, Academic Press, 2012, vol. 65, pp. 471–517.
6 P. Workman, F. Burrows, L. Neckers and N. Rosen, Ann. N. Y.
Acad. Sci., 2007, 1113, 202–216.
7 B. S. J. Blagg and T. D. Kerr, Med. Res. Rev., 2006, 26, 310–338.
8 M. Taipale, I. Krykbaeva, M. Koeva, C. Kayatekin,
K. D. Westover, G. I. Karras and S. Lindquist, Cell, 2012,
150, 987–1001.
9 I. Fierro-Monti, P. Echeverria, J. Racle, C. Hernandez,
D. Picard and M. Quadroni, PLoS One, 2013, 8, e80425.
10 D. Hanahan and R. A. Weinberg, Cell, 2000, 100, 57–70.
11 (a) M. A. Biamonte, R. Van de Water, J. W. Arndt,
R. H. Scannevin, D. Perret and W.-C. Lee, J. Med. Chem.,
2010, 53, 3–17; (b) Y. S. Kim, S. V. Alarcon, S. Lee,
M. J. Lee, G. Giaccone, L. Neckers and J. B. Trepel, Curr.
Top. Med. Chem., 2009, 9, 1479–1492.
25 (a) L. B. Peterson and B. S. J. Blagg, Bioorg. Med. Chem. Lett.,
2010, 20, 3957–3960; (b) H. P. Zhao, E. Moroni, G. Colombo
and B. S. J. Blagg, ACS Med. Chem. Lett., 2014, 5, 84–88.
26 A. C. Donnelly, J. R. Mays, J. A. Burlison, J. T. Nelson,
G. Vielhauer, J. Holzbeierlein and B. S. J. Blagg, J. Org.
Chem., 2008, 73, 8901–8920.
27 H. P. Zhao, E. Moroni, G. Colombo and B. S. J. Blagg, ACS
Med. Chem. Lett., 2014, 5, 84–88.
28 G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba
and A. A. Genazzani, Med. Res. Rev., 2008, 28, 278–308.
29 H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8,
1128–1137.
30 P. Thirumurugan, D. Matosiuk and K. Jozwiak, Chem. Rev.,
2013, 113, 4905–4979.
31 A. Kolarovic, M. Schnurch and M. D. Mihovilovic, J. Org.
Chem., 2011, 76, 2613–2618.
32 B. R. Kusuma, A. Khandewal, W. Gu, D. Brown, W. Liu,
G. Vielhauer, J. Holzbeierlein and B. S. J. Blagg, Bioorg.
Med. Chem., 2014, 22, 1441–1449.
33 R. L. Matts, A. Dixit, L. B. Peterson, L. Sun, S. Voruganti,
P. Kalyanaraman, S. D. Hartson, G. M. Verkhivker and
B. S. J. Blagg, ACS Chem. Biol., 2011, 6, 800–807.
34 B.-G. Yun, W. Huang, N. Leach, S. D. Hartson and
R. L. Matts, Biochemistry, 2004, 43, 8217–8229.
12 C. K. Vaughan, L. Neckers and P. W. Piper, Nat. Struct. Mol.
Biol., 2010, 17, 1400–1404.
This journal is © The Royal Society of Chemistry 2014
Med. Chem. Commun., 2014, 5, 1317–1323 | 1323