Communication
ChemComm
in organic synthesis and medicinal chemistry. Further studies
on the substrate scope and biological activities of the polyhe-
terocyclic products are ongoing in our laboratory.
The authors thank the National Nature Science Foundation
of China (21871095), the State Key Laboratory of Pulp and Paper
Engineering (202012) and the Fundamental Research Funds for
the Central Universities (x2hgD2200520) for financial support.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) L. Zhou, S. Y. Yu, Y. Tang and L. Wang, Angew. Chem., Int. Ed.,
2019, 58, 15016; (b) X. Wang, J. Zhang, D. Chen, B. Wang, X. Yang,
Y. Ma and M. Szostak, Org. Lett., 2019, 21, 7038.
2 G. Albano and L. A. Aronica, Eur. J. Org. Chem., 2017, 7204.
3 R. P. Pandit, S. T. Kim and D. H. Ryu, Angew. Chem., Int. Ed., 2019,
58, 13427.
Scheme 4 Proposed mechanism.
4 A. Radadiya and A. Shah, Eur. J. Med. Chem., 2015, 97, 356.
5 G. Daidone, D. Raffa, B. Maggio, F. Plescia, V. M. C. Cutuli,
N. G. Mangano and A. Caruso, Arch. Pharm., 1999, 332, 50.
6 M. P. Giovannoni, C. Vergelli, C. Ghelardini, N. Galeotti, A. Bartolini
and P. V. Dal, J. Med. Chem., 2003, 46, 1055.
7 S. Li, Y. Du and Q. Kang, Org. Chem. Front., 2019, 6, 2775.
8 X. Ran, Y. Zhao, L. Liu, L. Bai, C.-Y. Yang, B. Zhou, J. L. Meagher,
K. Chinnaswamy, J. A. Stuckey and S. Wang, J. Med. Chem., 2015,
58, 4927.
9 (a) J. Chen, X. Hu, L. Lu and W. Xiao, Acc. Chem. Res., 2016, 49, 1911;
(b) J. Feng and J. Zhang, ACS Catal., 2016, 6, 6651.
10 (a) M. Yu, Y. Xie, J. Li and Y. Zhang, Adv. Synth. Catal., 2011,
353, 2933; (b) W. Wu, S. Yi, W. Huang, D. Luo and H. Jiang,
Org. Lett., 2017, 19, 2825; (c) W. Wu, S. Yi, Y. Yu, W. Huang and
H. Jiang, J. Org. Chem., 2017, 82, 1224.
bromide detected by GC analysis (Scheme 3b), which suggested
the initiation process of this cascade cyclization reaction.
Additionally, when the iodo-substituent in 2a was changed to
–bromo, –chloro or –H, the yield of 3a decreased dramatically
or even could not be obtained, indicating that the oxidative
addition might be involved in this process and the C–I bond
exhibited the highest reactivity (Scheme 3c). Moreover, when
the reaction was conducted with 1-(allyloxy)-2-iodobenzene
instead of 2a, the corresponding chroman product could not
be detected, illustrating the key role of the alkenyl ether moiety
in the success of this transformation (Scheme 3d).
11 W. Chen, Y. Li, Y. Chen and C. Ho, Angew. Chem., Int. Ed., 2018,
57, 2677.
Based on the above experimental results and previous
reports,15
a
plausible reaction mechanism is proposed 12 (a) F. Foubelo, A. Gutierrez and M. Yus, Tetrahedron Lett., 1999,
´
40, 8173; (b) Y. Nishimoto, H. Ueda, M. Yasuda and A. Baba,
(Scheme 4). The reaction is initiated by trans-oxypalladation
of alkynyl oxime ethers 1, generating the oxonium intermediate
I, which would transform to the alkenylpalladium intermediate
II via the elimination of methyl bromide. Subsequently, migra-
tory insertion of o-iodophenyl alkenyl ether 2 into the C–Pd
bond affords the key alkylpalladium species III. Next, b-hydrogen
elimination of III gives the key intermediate IV, which undergoes
oxidative addition to afford the arylpalladium intermediate V.
Then an intramolecular Heck coupling occurs and generates the
alkylpalladium intermediate VI. Finally, the protonolysis of VI
yields the desired product 3 and a palladium(II) species, which
continues to the catalytic cycle with the aid of CuCl2.
In summary, we developed a palladium-catalyzed cascade
cyclization reaction of alkenyl ethers with alkynyl oxime ethers,
providing an efficient and convenient strategy for the construc-
tion of various 2-isoxazolyl-2,3-dihydrobenzofurans. Noteworth-
ily, the electron-rich alkene moiety served as a three-atom unit,
realizing the selective synthesis of a structurally novel polyhe-
terocyclic skeleton. With merits such as a facile operation
process, high regio- and chemoselectivities, and good tolerance
of functional groups, the protocol shows potential applications
Angew. Chem., Int. Ed., 2012, 51, 8073; (c) A. Stadler, H. Schenck,
K. S. A. Vallin, M. Larhed and A. Hallberg, Adv. Synth. Catal., 2004,
346, 1773; (d) L. Xu, W. Chen, J. Ross and J. Xiao, Org. Lett., 2001,
3, 295; (e) J. Mo and J. Xiao, Angew. Chem., Int. Ed., 2006, 45, 4152;
( f ) T. Iwasaki, Y. Miyata, R. Akimoto, Y. Fujii, H. Kuniyasu and
N. Kambe, J. Am. Chem. Soc., 2014, 136, 9260; (g) W. Lin, W. Li,
D. Lu, F. Su, T. Wen and H. Zhang, ACS Catal., 2018, 8, 8070.
13 (a) Y. Ebe and T. Nishimura, J. Am. Chem. Soc., 2015, 137, 5899;
(b) L. Ouyang, L. Zhan, J. Li, Q. Zhang, C. Qi, W. Wu and H. Jiang,
Org. Lett., 2018, 20, 550; (c) L. Yang, W. Ji, E. Lin, J. Li, W. Fan, Q. Li
and H. Wang, Org. Lett., 2018, 20, 1924; (d) L. Ouyang, J. Li, J. Zheng,
J. Huang, C. Qi, W. Wu and H. Jiang, Angew. Chem., Int. Ed., 2017,
56, 15926.
14 (a) W. Srisiri and A. B. Padias, J. Org. Chem., 1993, 58, 4185;
(b) K. Hori, J. Ito, T. Ohta and I. Furukawa, Tetrahedron, 1998,
54, 12737; (c) H. Kusama, M. Ebisawa, H. Funami and N. Iwasawa,
J. Am. Chem. Soc., 2009, 131, 16352; (d) C. D. Schmidt, J. Kaschel,
T. F. Schneider, D. Kratzert, D. Stalke and D. B. Werz, Org. Lett.,
2013, 15, 6098; (e) Z. Wang and J. Sun, Org. Lett., 2017, 19, 2334;
( f ) A. N. Parker, M. C. Martin, R. Shenje and S. France, Org. Lett.,
2019, 21, 7268.
15 (a) J. P. Waldo and R. C. Larock, Org. Lett., 2005, 7, 5203; (b) Z. She,
D. Niu, L. Chen, M. A. Gunawan, X. Shanja, W. H. Hersh and
Y. Chen, J. Org. Chem., 2012, 77, 3627; (c) Q. Wang, L. Huang, X. Wu
and H. Jiang, Org. Lett., 2013, 15, 5940; (d) C. Li, J. Li, F. Zhou, C. Li
and W. Wu, J. Org. Chem., 2019, 84, 11958; (e) W. Wu, C. Li, F. Zhou,
J. Li, X. Xu and H. Jiang, Adv. Synth. Catal., 2019, 361, 3813.
4802 | Chem. Commun., 2021, 57, 4799–4802
This journal is © The Royal Society of Chemistry 2021