ChemComm
Page 4 of 4
chelation to imine nitrogen or carbonyl oxygen is much less
temperature. The method provides easy access to a wide range of
favored in solution. As the uncoordinated N-sulfinyl group adopts
an approximate synperiplanar configuration, the bulky tert-butyl
group is positioned at the si-face of ketimine molecule (TS-1).
highly enantiomerically enriched 3-allyl or 3-propargyl
substituted 3-aminooxindoles under exceptionally mild
5
Thus, the allylzinc reagent attacks preferentially from the 40 transformations, the rapid asymmetric construction of two
sterically unblocked re-face of the imine C=N bond, facilitating
(S)-amine formation.
important classes of spirocyclic aminooxindoles has been
established.
This work was generously supported by the NSFC (21021063).
LB
LB
Zn
S
LB
Zn LB
LB
LB
Notes and references
O
S
N
N
O
45 State key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai
201203, People’s Republic of China. E-mail: xumh@mail.shcnc.ac.cn;
Fax/Tel: +86 21 5080 7388.
† Electronic Supplementary Information (ESI) available: Experimental
50 procedures and spectral data for new compounds. See
DOI: 10.1039/b000000x/
O
O
R
R
N
N
PG
PG
TS- II
TS- I
favored
disfavored
Figure 1. Mechanistic proposals for stereocontrol
1
(a) N. J. White, J. Antimicrob. Chemother. 1992, 30, 571; (b) M. Ochi,
K. Kawasaki, H. Kataoka and Y. Uchio, Biochem. Biophys. Res.
Commun. 2001, 283, 1118; (c) G. Decaux, A. Soupart and G. Vassart,
Lancet. 2008, 371, 1624; For related reviews, see: (d) F. Zhou, Y.-L.
Liu and J. Zhou, Adv. Synth. Catal. 2010, 352, 1381; (e) B. M. Trost
and M. K. Brennan, Synthesis 2009, 3003.
(a) I. Gorokhovik, L. Neuville and J. Zhu, Org. Lett. 2011, 13, 5536;
(b) Z.-Y. Cao, Y. Zhang, C.-B. Ji and J. Zhou, Org. Lett. 2011, 13,
6398; (c) B. Alcaide, P. Almendres and C. Aragoncillo, Eur. J. Org.
Chem. 2010, 2845; (d) S. P. Marsden, E. L. Watson and S. A. Raw,
Org. Lett. 2008, 10, 2905; (e) H. Miyabe, Y. Yamaoka and Y.
Takemoto, J. Org. Chem. 2005, 70, 3324; (f) F. Zhou, M. Ding and J.
Zhou, Org. Biomol. Chem. 2012, 10, 3178.
O
S
S
N
O
NH
N
HN
R1
Br
2. Grubbs(II), DCM
R1
R1
1. NaH,
HCl/MeOH
> 90%
O
O
O
55
60
N
N
Tr
Tr
Tr
3c, R1 = H, 97% de
1 = H, 68% yield
, R1 = H, 97% ee
7a,
8a
R
R1 = 5-OMe, 99% de
3i,
7b, R1 = 5-OMe, 70% yield
8b, R1 = 5-OMe, 99% ee
2
O
S
S
N
O
NH
N
HN
Br
1. NaH,
HCl/MeOH
92%
O
O
O
2. Grubbs(II), DCM
50%
N
N
Tr
Tr
Tr
7c
8c, 98% ee
3m
, 77:23 dr, 99% ee
65 3 (a) X. Companyó, G. Valero, O. Pineda, T. Calvet, M. Font-Bardí, A.
Moyano and R. Rios, Org. Biomol. Chem. 2012, 10, 431; (b) H.
Zhang, S.-J. Zhang, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Beilstein J.
Org. Chem. 2012, 8, 1241; (c) K. Shen, X. Liu, G. Wang, L. Lin and
X. Feng, Angew. Chem., Int. Ed. 2011, 50, 4684.
70 4 (a) P. Tolstoy, S. X. Y. Lee, C. Sparr and S. V. Ley. Org. Lett. 2012,
14, 4810; (b) S. Mouri, Z. Chen, H. Mitsunuma, M. Furutachi, S.
Matsunaga and M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 1255; (c)
Z. Yang, Z. Wang, S. Bai, K. Shen, D. Chen, X. Liu, L. Lin and X.
Feng, Chem-Eur. J. 2010, 16, 6632.
75 5 (a) F. Zhou, M. Ding, Y. L. Liu, C, H. Wang, C. B. Ji, Y. Y. Zhang
and J. Zhou, Adv. Synth. Catal. 2011, 353, 2945; (b) T. Bui, G. Torres,
C. Milite and C. F. Barbas, Org. Lett. 2010, 12, 5696; (c) L. Cheng, L.
Liu, D. Wang and Y. J. Chen, Org. Lett. 2009, 11, 3874; (d) Z. Q.
Qian, F. Zhou, T. P. Du, B. L. Wang, M. Ding, X. L. Zhao and J.
S
O
S
NH
HN
N
O
AgOAc
HCl/MeOH
O
O
O
NaBH3CN
70%
CH2Cl2, reflux
75%
N
Tr
N
N
Tr
Tr
, 99% de
4a
10
, 99% ee
9
10
Scheme 2 Facile synthesis of chiral spirocyclic oxindoles
Finally, the synthetic utility of this chemistry is demonstrated by
facile access to series of enantiopure spirocyclic
aminooxindoles (Scheme 2). A sequential treatment of the
a
15 addition products 3c, 3i with NaH/allyl bromide, followed by
Grubbs' catalyzed ring-closing metathesis, gave chiral spirocyclic
products 7a, 7b in good yields. After removal of the sulfinyl
group, the corresponding spirocyclic aminooxindoles were
obtained with no racemization detected. Similarly, by using 3m
20 as the substrate, spirocyclic product 8c bearing two contiguous
stereocenters on the 1,2,3,6-tetrahydropyridine ring was
conveniently produced. Remarkably, we found that the propargyl
adduct can also be applied to prepare specific spiro oxindoles
through intramolecular hydroamination strategy. Upon exposure
25 of 4a to AgOAc (15 mol%) in CH2Cl2, the cyclized product 9
was generated in 75% yield. Under acidic conditions in the
presence of NaBH3CN, the stereochemically defined spiro-
indolinone-pyrrolidine ring system was successfully constructed.
It is noteworthy that these chiral spirocyclic oxindole compounds
30 are valuable pharmacological components but usually difficult to
access.1e
80
85
90
Zhou, Chem. Commun. 2009, 6753.
6
(a) G. Lesma, N. Landoni, T. Pilati, A. Sacchetti and A. Silvani, J.
Org. Chem. 2009, 74, 4537; (b) H. H. Jung, A. W. Buesking and J. A.
Ellman, Org. Lett. 2011, 13, 3912; (c) W. Yan, D. Wang, J. Feng, P.
Li and R. Wang, J. Org. Chem. 2012, 77, 3311; (d) Y.-L. Liu, F. Zhou,
J.-J. Cao, C.-B. Ji, M. Ding and J. Zhou, Org. Biomol. Chem. 2010, 8,
3847; (e) Q. X. Guo, Y. W. Liu, X. C. Li, L. Z. Zhong and Y. G. Peng,
J. Org. Chem. 2012, 77, 3589.
T, S. Zhu and M, H. Xu, Chem. Commun. 2012, 48, 7274.
(a) X.-W. Sun, M.-H. Xu and G.-Q. Lin, Org. Lett. 2006, 8, 4979; (b)
M. Liu, A. Shen, X.-W. Sun, F. Deng, M.-H. Xu and G.-Q. Lin, Chem.
Commun. 2010, 46, 8460; (c) A. Shen, M. Liu, Z.-S. Jia, M.-H. Xu
and G.-Q. Lin, Org. Lett. 2010, 12, 5154 and references cited therein.
For a recent report by other group, see: (d) J. A. Sirvent, F. Foubelo
and M. Yus, Chem. Commun. 2012, 48, 2543.
7
8
95 9 S. Kobayashi, Y. Mori, J. S. Fossey and M. Salter, Chem. Rev. 2011,
111, 2626.
10 With cinnamyl bromide, no reaction occured at rt.
11 For a non-asymmetric synthesis example, see ref 2c.
12 See the Supplementary Information for details.
100 13 CCDC 916093 (3m) contains the supplementary crystallographic data.
In summary, a highly practical asymmetric approach for the
efficient preparation of chiral tetrasubstituted 3-aminooxindoles
has been developed based on
a
simple Zn-mediated
35 diastereoselective allylation/propargylation process at room
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3