ORGANIC
LETTERS
2013
Vol. 15, No. 5
1136–1139
[2,3]-Sigmatropic Rearrangements of
2‑Phosphineborane 2‑Propen-1-ols:
Rapid Access to Enantioenriched
Diphosphine Monoxide Derivatives
†
ꢀ
Carl A. Busacca,* Bo Qu, Elisa Farber, Nizar Haddad, Nicole Gret, Anjan K. Saha,
Magnus C. Eriksson, Jiang-Ping Wu, Keith R. Fandrick, Steve Han, Nelu Grinberg,
Shengli Ma, Heewon Lee, Zhibin Li, Michael Spinelli, Austin Gold, Zhuzhu Wang,†
Guijun Wang,‡ Peter Wipf,† and Chris H. Senanayake
Chemical Development, Boehringer-Ingelheim Pharmaceuticals, Inc., 900 Ridgebury
Road, Ridgefield, Connecticut 06877, United States, Department of Chemistry,
Center for Chemical Methodologies and Library Development, University of Pittsburgh,
219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States, and Department
of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard,
Norfolk, Virginia 23529, United States
Received February 4, 2013
ABSTRACT
Hydrophosphination of secondary propargylic alcohols generates phosphine-containing allylic alcohols that undergo facile [2,3]-sigmatropic
rearrangements with chlorophosphines, furnishing highly enantioenriched, crystalline diphosphine monoxides. The configuration at the newly
formed stereocenter is opposite to that expected based on prior studies, and an ab initio computational evaluation of the possible transition states
was performed to help explain the stereochemical course of the reaction.
Allylic alcoholsand their derivatives demonstratea large
number of useful transformations with both nucleophiles
and electrophiles.11 We have recently developed the first
uncatalyzed hydrophosphination of propargylic alcohols
and amines with phosphine boranes.2,3 These facile reac-
tions proceed at or below ambient temperature and utilize
bench-stable phosphine boranes rather than pyrophoric-
free phosphines.4 The phosphine-containing products de-
rived from propargylic alcohols possess an allylic alcohol
moiety that can be utilized to introduce additional car-
bonꢀheteroatom bonds onto the carbon chain. Previous
studies by Knochel5 on [2,3]-sigmatropic rearrangements
of allylic alcohols (lacking any phosphine substitution)
with chlorophosphines inspired us to examine the reactivity
† University of Pittsburgh.
‡ Old Dominion University.
(1) For reviews, see: (a) Emer, E.; Sinisi, S.; Capdevila, M. G.;
Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem.
2011, 647–666. (b) Lu, Z.; Ma, S. Angew. Chem. 2008, 120, 264–303.
Angew. Chem., Int. Ed. 2008, 47, 258–297. (c) Pfaltz, A.; Lautens, M.
Allylic Substitution Reactions. In Comprehensive Asymmetric Catalysis
IꢀIII; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag:
Berlin, 1999; pp 833ꢀ884. (d) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem.
Sci. 2010, 1, 427–440.
ꢀ
(2) Busacca, C. A.; Qu, B.; Farber, E.; Haddad, N.; Gret, N.; Saha,
A. K.; Eriksson, M. C.; Wu, J.-P.; Fandrick, K. R.; Han, S.; Grinberg,
N.; Ma, S.; Lee, H.; Li, Z.; Spinelli, M.; Gold, A.; Wang, G.; Wipf, P.;
Senanayake, C. H. Org. Lett. 201310.1021/ol400309y.
(3) See also: Mimeau, D.; Gaumont, A.-C. J. Org. Chem. 2003, 68,
7016–7022.
(4) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I.
Chem. Rev. 2010, 110, 4023–4078.
(5) (a) Liron, F.; Knochel, P. Chem. Commun. 2004, 304–305.
(b) Dermay, S.; Harms, K.; Knochel, P. Tetrahedron Lett. 1999, 40,
4981–4984.
r
10.1021/ol400310h
Published on Web 02/21/2013
2013 American Chemical Society