662
C.-L. Ciana et al. / Bioorg. Med. Chem. Lett. 23 (2013) 658–662
OH
mouse model.15 The activity of the compound was measured after
OH
a single oral dose of 1 Â 100 mg/kg. Compound 52d showed a
reduction of 87% of parasitemia compared to the non-treated mice
(Fig. 9). Taking into account the modest IC50 of 52d against P. berg-
hei, this result confirms the potential of this hybrid series in the
quest for new anti-malarials.
HN
O
O
O
NEt2
NEt2
O
Cl
N
Hybrid compound 5816b
57
Amodiaquine
In conclusion, we have developed a new series of compounds
based on a hydroxy-ethyl-amine scaffold. The compounds are
highly potent against P. falciparum parasites in the 72 h assay,
show only a low reduction in activity upon addition of plasma to
the assay medium and the potential for low in vivo clearance.
The incorporation of a Mannich base pharmacophore resulted in
improved speed of action. Further results will be reported in due
course.
Figure 8. Anti-malarial compounds containing a Mannich base pharmacophore.
IC50 NF54 alb 72 h = 65 nM
IC50 NF54 ser 72 h = 42 nM
IC50 NF54 24 h =
IC50 K1 alb 72h =
IC50 K1 ser 72h =
69 nM
13 nM
9.5 nM
N
O
N
H
N
H
IC50 P.Berghei 24 h = 140 nM
OH
MLM =
90 µl/min.mg
N
OH
52d
N
Dose: 1x100 mg/kg po
87% reduction of parasitemia
7 days of survivals
Supplementary data
Supplementary data associated with this article can be found,
Figure 9. In vivo activity of 52d in the P. berghei infected mouse model.
benzyl amine had however a noticeable effect on the IC50, going
from an inactive compound 52a with a pyrrolidine as a side chain
to 52d with an IC50 NF54 alb 72 h = 65 nM bearing a dipropylamine
side chain. In addition compound 52d showed activity against P.
References and notes
1. World Malaria Report 2011, WHO, 2011.
2. Global Report on Antimalarial Efficacy and Drug Resistance 2000–2010, WHO,
2010.
berghei and an in vitro metabolic stability below 100 ll/(min mg).
3. For examples see: (a) Liu, K.; Shi, H.; Xiao, H.; Chong, A. G. L.; Bi, X.; Chang, Y.-
T.; Tan, K. S. W.; Yada, R. Y.; Yao, S. Q. Angew. Chem., Int. Ed. 2009, 48, 8293; (b)
Haque, T. S.; Skillman, A. G.; Lee, C. E.; Habashita, H.; Gluzman, I. Y.; Ewing, T. J.
A.; Goldberg, D. E.; Kuntz, Irwin D.; Ellman, J. A. J. Med. Chem. 1999, 2, 1428; (c)
Noeteberg, D.; Hamelink, E.; Hulten, J.; Wahlgren, M.; Vrang, L.; Samuelsson, B.;
Hallberg, A. J. Med. Chem. 2003, 46, 734.
4. (a) Berry, C. Curr. Opin. Drug Disc. Dev. 2000, 3, 624; (b) Boss, C.; Richard-
Bildstein, S.; Weller, T.; Fischli, W.; Meyer, S.; Binkert, C. Curr. Med. Chem. 2003,
10, 883.
The replacement of the N,N-dipropylbenzamide in 13 by a Man-
nich base resulted in poorly active compounds 53a–c. Changing the
substitution pattern of the Mannich base significantly improved the
IC50 in the 72 h assay. However, despite the presence of the Man-
nich base pharmacophore, compound 54a showed a considerable
shift between the 24 and the 72 h assay.
The toxicity of amodiaquine 57 (Fig. 8) is believed to come from
the 4-hydroxyanilino moiety, which can be oxidized by enzymes to
the quinoneimine. Nucleophilic addition of proteins to this reactive
intermediate can occur, affecting cellular function.17 Placing the
OH group meta to the nitrogen would block this oxidation pathway
and solve the potential toxicity problem. Therefore, in case the pyr-
idine was replaced by a Mannich base, two different substitution
patterns were investigated using 4-hydroxy-aniline (55a–c) and
3-hydroxy-aniline (56a–c). Both substitution patterns resulted in
compounds with low nM activity in the 72 h assay against P. falci-
parum. Despite significant improvement in the activity of these hy-
brid compounds compared to the original series in the 24 h assay,
they still exhibited a difference between their IC50 after 24 and
72 h of incubation.
To assess the potency towards a resistant strain of P. falciparum,
the IC50 values of a set of compounds was determined against the P.
falciparum K1 strain (chloroquine-resistant). All compounds mea-
sured did not show an activity difference between the NF54 and
the K1 strain (Table 2, Supplementary data). This series therefore
has the potential to be active against chloroquine resistant
parasites.
5. Liu, J.; Istvan, Eva S.; Gluzman, I. Y.; Gross, J.; Daniel, E.; Goldberg, D. E. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 8840.
6. Trager, W.; Jensen, J. B. Science 1976, 193, 673.
7. Gamo, F.-J.; Sanz, L. M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.-L.;
Vanderwall, D. E.; Green, D. V. S.; Kumar, V.; Hasan, S.; Brown, J. R.; Peishoff, C.
E.; Cardon, L. R.; Garcia-Bustos, J. F. Nature 2010, 465, 305.
8. Yuasa, Y.; Yuasa, Y.; Tsuruta, H. Synth. Commun. 1998, 28, 395.
9. Dei, S.; Teodori, E.; Garnier-Suillerot, A.; Gualtieri, F.; Scapecchi, S.; Budriesi, R.;
Chiarini, A. Bioorg. Med. Chem. 2001, 9, 2673.
10. Synthesized according to: Wang, D.; Nugent, W. A. Org. Synth. 2007, 84, 58. or
commercially available.
11. (a) Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Antimicrob. Agents
Chemother. 1979, 16, 710; (b) Snyder, C.; Chollet, J.; Santo-Tomas, J.; Scheurer,
C.; Wittlin, S. Exp. Parasitol. 2007, 115, 296.
12. Obach, R. S.; Baxter, J. G.; Liston, T. E.; Silber, B. M.; Jones, B. C.; MacIntyre, F.;
Rance, D. J.; Wastall, P. J. Pharmacol. Exp. Ther. 1997, 283, 46.
13. White, N. J. Science 2008, 320, 330.
14. For method see: Brunner, R.; Aissaoui, H.; Boss, C.; Bozdech, Z.; Brun, R.;
Corminboeuf, O.; Delahaye, S.; Fischli, C.; Heidmann, B.; Kaiser, M.; Kamber, J.;
Meyer, S.; Papastogiannidis, P.; Siegrist, R.; Voss, T.; Welford, R.; Wittlin, S.;
Binkert, C. J. Infect. Dis. 2012, 206, 735.
15. For methods see Ref. 14.
16. (a) Meunier, B. Acc. Chem. Res. 2008, 41, 69; (b) Chadwick, J.; Amewu, R. K.;
Marti, F.; Bousejra-El Garah, F.; Sharma, R.; Berry, N. G.; Stocks, P. A.; Burrell-
Saward, H.; Wittlin, S.; Rottmann, M.; Brun, R.; Taramelli, D.; Parapini, S.;
Ward, S. A.; O’Neill, P. M. ChemMedChem 2011, 6, 1357.
17. (a) Maggs, J. L.; Kitteringham, N. R.; Park, B. K. Biochem. Pharmacol. 1988, 37,
303; (b) Harrison, A. C.; Kitteringham, N. R.; Clarke, J. B.; Park, B. K. Biochem.
Pharmacol. 1992, 43, 1421.
In order to evaluate the potential of the hybrid series in vivo,
compound 52d was selected for testing in the P. berghei infected