Medaer, B.; De Knaep, F.; Bohets, H.; De Clerck, F.;
Lampo, A.; Williams, P.; Stoffels, P. J. Med. Chem.
2005, 48, 1901.
compound is less active against the WT virus by a
factor of 5 and 200-fold less active towards the Y181C
variant. In the MC/FEP simulations, the isopropyl group
is oriented much as in Figure 1 (bottom) with significant
projection of one methyl group towards the Tyr181
cavity. Though FEP calculations were not done for the
cyclopropyl analog, model building does show the
expected reduced projection owing to the ca. 60º
internal CCC angles. A cyclopropyl group is decidedly
more compact than an isopropyl group, which is
disadvantageous in the present case. A cyclopropyl
group is also somewhat less lipophilic as apparent in
observed octanol/water log P values of 3.3 for
cyclopropylbenzene and 3.7 for isopropylbenzene.24
Finally, to integrate the investigation of the ‘eastern
extensions’7b with the present work, 2b was
synthesized. In comparison to 2a, addition of the ethyl
group provides a 5-fold activity boost against the WT
virus and a 50-fold gain against the Y181C-bearing
variant. The fold gains are almost the same as for the 1b
and 1e pair.
In summary, further study of oxazoles 1 as NNRTIs
has focused on optimization of the 4-R group to yield
greater potency against strains of HIV-1 containing the
Tyr181Cys mutation in the reverse transcriptase
enzyme. Results of MC/FEP calculations were highly
provocative in predicting that substantial differential
gains would be obtained for the viral variant over the
wild-type virus for R = ethyl and isopropyl. This was
confirmed experimentally through synthesis and
assaying of the analogs in Table 2. 1e and 1f emerged as
NNRTIs with sub-10 nM potency towards both viral
strains.
6. Jorgensen, W. L.; Ruiz-Caro, J.; Tirado-Rives, J.;
Basavapathruni, A.; Anderson, K. S.; Hamilton, A. D.
Bioorg. Med. Chem. Lett. 2006, 16, 663.
7. (a) Zeevaart, J. G.; Wang, L.; Thakur, V. V.; Leung,
C. S.; Tirado-Rives, J.; Bailey, C. M.; Domaoal, R.
A.; Anderson, K. S.; Jorgensen, W. L. J. Am. Chem.
Soc. 2008, 130, 9492. (b) Leung, C. S.; Zeevaart, J.
G.; Domaoal, R. A.; Bollini, M.; Thakur, V. V.;
Spasov, K.; Anderson, K. S.; Jorgensen, W. L. Bioorg.
Med. Chem. Lett. 2010, 20, 2485-2488.
8. Jorgensen, W. L.; Bollini, M.; Thakur, V. V.; Domaoal,
R. A.; Spasov, K.; Anderson, K. S. J. Am. Chem. Soc.
2011, 133, 15686.
9. Bollini, M.; Domaoal, R. A.; Thakur, V. V.; Gallardo-
Macias, R.; Spasov, K. A.; Anderson, K. A.;
Jorgensen, W. L. J. Med. Chem. 2011, 54, 8582-8591
10. Jorgensen, W. L. Acc. Chem. Res. 2009, 42, 724-733.
11. Das, K.; Clark, A. D., Jr.; Lewi, P. J.; Heeres, J.; de
Jonge, M. R.; Koymans, L. M. H.; Vinkers, H. M.;
Daeyaert, F.; Ludovici, D. W.; Kukla, M. J.; De Corte,
B.; Kavash, R. W.; Ho, C. Y.; Ye, H.; Lichtenstein, M.
A.; Andries, K.; Pauwels, R.; de Béthune, M.-P.;
Boyer, P. L.; Clark, P.; Hughes, S. H.; Janssen, P. A.
J. & Arnold, E. J. Med. Chem. 2004, 47, 2550.
12. Jorgensen, W. L.; Tirado-Rives, J. J. Comput. Chem.
2005, 26, 1689.
13. Jorgensen, W. L.; Tirado-Rives, J. Proc. Natl. Acad.
Sci. U.S.A. 2005, 102, 6665.
14. Jorgensen, W. L.; Schyman, P. J. Chem. Theory
Comput. 2012, 8, 1689.
15. Wallace, D. J.; Cheng, C.-Y. Tetrahedron Lett. 2002,
43, 6987.
16. Kumada, M. Pure Appl. Chem. 1980, 52, 669.
17. Doherty, S.; Knight, J. C.; Robins, E. G.; Scanlan, T.
H.; Champkin, P. A.; Clegg, W. J. Am. Chem. Soc.
2001, 123, 5110.
Acknowledgements
Gratitude is expressed to the National Institutes of
Health (AI44616, GM32136, GM49551) for support.
Receipt of reagents through the NIH AIDS Research
and Reference Reagent Program, Division of AIDS,
NIAID, NIH is also greatly appreciated.
18. Liang, X.; Bols, M. J. Chem. Soc., Perkin Trans. 1,
2002, 503.
19. Zhang, D., Chen, Z., Cai, H., Zou, X. J. Fluor. Chem.,
2009, 130, 938.
20. Massah, A. R., Mosharafian, M., Momeni, A. R.,
Aliyan, H., Naghash, H., Adibnejad, M. Synth.
Commun, 2007, 37, 1807.
References
21. Lin, T. S.; Luo, M. Z.; Liu, M. C.; Pai, S. B.;
Dutschman,G. E.; Cheng, Y. C. Biochem. Pharmacol.
1994, 47, 171.
22. Ray, A. S.; Yang, Z.; Chu, C. K.; Anderson, K. S.
Antimicrob. Agents Chemother. 2002, 46, 887.
23. Guimarães, C. R. W. J. Chem. Theory Comput. 2011,
7, 2296.
24. Hansch, C.; Leo, A.; Hoekman, D. “Exploring QSAR
– Hydrophobic, Electronic, and Steric Constants”,
American Chemical Society: Washington, 1995.
1. Prajapati, D. G.; Ramajayam, R.; Yadav, M. R.;
Giridhar, R. Bioorg. Med. Chem. 2009, 17, 5744.
2. de Bethune, M.-P. Antiviral Res. 2010, 85, 75.
3. (a) Richman, D. D.; Margolis, D. M.; Delaney, M.;
Greene, W. C.; Hazuda, D.; Pomerantz, R. J. Science
2009, 323, 1304. (b) Richman, D. D. Curr. Opin. HIV
AIDS 2011, 6, 1.
4. De Clerq, E. Nature Rev. Drug Disc. 2007, 6, 1001.
5. Janssen, P. A. J.; Lewi, P. J.; Arnold, E.; Daeyaert, F.;
de Jonge, M.; Heeres, J.; Koymans, L.; Vinkers, M.;
Guillemont, J.; Pasquier, E.; Kukla, M.; Ludovici, D.;
Andries, K.; de Bethune, M.-P.; Pauwels, R.; Das, K.;
Clark, A. D., Jr.; Frenkel, Y. V.; Hughes, S. H.;