ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Monophasic Catalytic System for the
Selective Semireduction of Alkynes
Aaron M Whittaker and Gojko Lalic*
Department of Chemistry, University of Washington, Seattle, Washington 98195,
United States
Received January 20, 2013
ABSTRACT
A highly efficient semireduction of alkynes has been developed. Using 0.5À2 mol % of a copper catalyst, semireduction can be accomplished with
a wide range of substrates, including both internal and terminal alkynes without over-reduction. The new method has excellent chemoselectivity,
and the semireduction can be accomplished even in the presence of nitro and aryl iodo groups. Finally, commercial availability of a catalyst
precursor adds to the appeal of the new catalytic system.
One of the most important transformations of alkynes is
their semireduction to alkenes, a transformation usually
accomplished using Lindlar1 or P2 nickel2 catalysts. How-
ever, both catalysts havesignificant limitations. P2 nickel is
not selective in reductions ofterminalalkynes and hastobe
prepared fresh before each reaction.2b Lindlar catalyst
induces EÀZ isomerization and further reduction of the
alkene products, thus, strict monitoring of the reaction
progress is necessary.3 Over-reduction is even more pro-
nounced with terminal alkynes and alkynes that adsorb
well to the catalyst surface, such as arylacetylenes, and
alkynescontaining polarfunctionalgroups.3b,4 Finally, the
notorious batch variability further complicates the use of
the Lindlar catalyst.4b
To address these problems, numerous attempts have
been made to control the reactivity of solid-state catalysts
by modifications of the catalyst surface.5 Although sig-
nificant progress has been made in the reduction of
arylacetylenes with this approach,5rÀt few reports also
describe selective reduction of terminal alkynes,5b,s which
is still a major challenge.5mÀo Similarly, few catalysts have
been used for the reduction of alkynes in the presence of
nitro or aryl iodo groups.5b
Considerable effort has also been devoted to the devel-
opment of molecular catalysts of rhodium,6 chromium,7
palladium,4b,8 vanadium,9 and other metals.10 Although
(5) Selected examples: (a) Campos, K. R.; Cai, D.; Journet, M.;
Kowal, J. J.; Larsen, R. D.; Reider, P. J. J. Org. Chem. 2001, 66, 3634. (b)
Yabe, Y.; Yamada, T.; Nagata, S.; Sawama, Y.; Monguchi, Y.; Sajiki,
H. Adv. Synth. Catal. 2012, 354, 1264. (c) Gruttadauria, M.; Noto, R.;
Deganello, G.; Liotta, L. F. Tetrahedron Lett. 1999, 40, 2857. (d) Khan,
N. A. J. Am. Chem. Soc. 1952, 74, 3018. (e) Nitta, Y.; Imanaka, T.;
Teranishi, S. Bull. Chem. Soc. Jpn. 1981, 54, 3579. (f) Brunet, J. J.;
Gallois, P.; Caubere, P. J. Org. Chem. 1980, 45, 1937. (g) Gallois, P.;
Brunet, J. J.; Caubere, P. J. Org. Chem. 1980, 45, 1946. (h) Brunet, J. J.;
Caubere, P. J. Org. Chem. 1984, 49, 4058. (i) Yoon, N. M.; Park, K. B.;
€
Lee, H. J.; Choi, J. Tetrahedron Lett. 1996, 37, 8527. (j) Armbruster, M.;
€
Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlogl, R. J. Am.
Chem. Soc. 2010, 132, 14745. (k) Gruttadauria, M.; Liotta, L. F.; Noto,
ꢀ
R.; Deganello, G. Tetrahedron Lett. 2001, 42, 2015. (l) Mastalir, A.;
ꢀ
€
ꢀ
Kiraly, Z.; Szollosi, G.; Bartok, M. J. Catal. 2000, 194, 146. (m) Nishio,
R.; Sugiura, M.; Kobayashi, S. Org. Biomol. Chem. 2006, 4, 992. (n)
Alonso, F.; Osante, I.; Yus, M. Adv. Synth. Catal. 2006, 348, 305. (o)
Shao, Z.; Li, C.; Chen, X.; Pang, M.; Wang, X.; Liang, C. ChemCatChem
ꢀ
ꢀ
2010, 2, 1555. (p) Mastalir, A.; Kiraly, Z. J. Catal. 2003, 220, 372. (q)
Panpranot, J.; Phandinthong, K.; Sirikajorn, T.; Arai, M.; Praserthdam,
P. J. Mol. Catal. A: Chem. 2007, 261, 29. (r) Weerachawanasak, P.;
Mekasuwandumrong, O.; Arai, M.; Fujita, S.-I.; Praserthdam, P.;
Panpranot, J. J. Catal. 2009, 262, 199. (s) Hori, J.; Murata, K.; Sugai,
T.; Shinohara, H.; Noyori, R.; Arai, N.; Kurono, N.; Ohkuma, T. Adv.
Synth. Catal. 2009, 351, 3143. (t) Dominguez-Dominguez, S.; Berenguer-
Murcia, A.; Pradhan, B. K.; Linares-Solano, A.; Cazorla-Amoros, D.
J. Phys. Chem. C 2008, 112, 3827.
(1) (a) Lindlar, H. Helv. Chim. Acta 1952, 35, 446. (b) Lindlar, H.;
Dubuis, R. Org. Synth. Coll. 1973, 5, 880.
(2) (a) Brown, C. A. Chem. Commun. 1970, 139. (b) Brown, C. A.;
Ahuja, V. K. J. Org. Chem. 1973, 38, 2226.
ꢀ
ꢀ
ꢀ ꢀ
(3) (a) Molnar, A.; Sarkany, A.; Varga, M. J. Mol. Catal. A: Chem.
2001, 173, 185. (b) Ulan, J. G.; Maier, W. F.; Smith, D. A. J. Org. Chem.
1987, 52, 3132.
(4) (a) van Laren, M. W.; Elsevier, C. J. Angew. Chem., Int. Ed. 1999,
38, 3715. (b) Kluwer, A. M.; Koblenz, T. S.; Jonischkeit, T.; Woelk, K.;
Elsevier, C. J. J. Am. Chem. Soc. 2005, 127, 15470.
(6) Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 2143.
(7) Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1985, 50, 1147.
r
10.1021/ol4001679
XXXX American Chemical Society