Journal of the American Chemical Society
Communication
Chirality 2003, 15, 360. (e) Kozlowski, M. C.; Panda, M. J. Org. Chem.
2003, 68, 2061. (f) Jiang, C.; Li, Y.; Tian, Q.; You, T. J. Chem. Inf.
Comput. Sci. 2003, 43, 1876. (g) Melville, J. L.; Andrews, B. I.; Lygo,
B.; Hirst, J. D. Chem. Commun. 2004, 1410. (h) Melville, J. L.;
Lovelock, K. R. J.; Wilson, C.; Allbutt, B.; Burke, E. K.; Lygo, B.; Hirst,
J. D. J. Chem. Inf. Model. 2005, 45, 971. (i) Ianni, J. C.; Annamalai, V.;
Phuan, P.-W.; Panda, M.; Kozlowski, M. C. Angew. Chem., Int. Ed.
2006, 45, 5502. (j) Chen, J.; Wen, J.; Li, M.; You, T. J. Mol. Catal. A:
Chem. 2006, 258, 191. (k) Urbano-Cuadrado, M.; Carbo, J. J.;
Maldonado, A. G.; Bo, C. J. Chem. Inf. Model. 2007, 47, 2228. (l) Jiang,
C.; Li, D.; Wen, J.; You, T. J. Mol. Model. 2007, 13, 91. (m) Donoghue,
P. J.; Helquist, P.; Norrby, P.-O.; Wiest, O. J. Chem. Theory Comput.
2008, 4, 1313. (n) O. Nilsson Lill, S.; Forbes, A.; Donoghue, P.;
Verdolino, V.; Wiest, O.; Rydberg, P.; Norrby, P.-O. Curr. Org. Chem.
2010, 14, 1629. (o) Denmark, S. E.; Gould, N. D.; Wolf, L. M. J. Org.
Chem. 2011, 76, 4337. (p) Denmark, S. E.; Gould, N. D.; Wolf, L. M. J.
Org. Chem. 2011, 76, 4260. (q) Weill, N.; Corbeil, C. R.; De Schutter,
J. W.; Moitessier, N. J. Comput. Chem. 2011, 32, 2878.
(2) (a) Tute, M. S. In Comprehensive Medicinal Chemistry; Hansch,
C., Sammes, P. G., Taylor, J. B., Eds.; Pergamon Press: Oxford, 1990;
Vol. 4, p 1. (b) Hansch, C.; Leo, A. Exploring QSAR: Fundamentals and
Applications in Chemistry and Biology; American Chemical Society:
Washington, DC, 1995. (c) Kubinyi, H. Drug Discovery Today 1997, 2,
457. (d) Kubinyi, H. Drug Discovery Today 1997, 2, 538. (e) Gonzalez,
M. P.; Teran, C.; Saiz-Urra, L.; Teijeira, M. Curr. Top. Med. Chem.
2008, 8, 1606. (f) Verma, J.; Khedkar, V. M.; Coutinho, E. C. Curr.
Top. Med. Chem. 2010, 10, 95.
than observed (Figure 5). Evaluation of the predicted versus
measured plot reveals good correlation of the predicted values
but poor accuracy, suggesting that the source of this error is
systematic, with each enantioselectivity being overestimated by
∼1 kcal/mol. Because S10 and S11 present similar steric
environments, especially in regard to the B1 parameter, we
explored a potential source of this systemic error. The purpose
of this study was to evaluate the steric effects of ligand and
catalyst simultaneously; to simplify the problem, we did not
incorporate an electronic parameter in either our design matrix
or our analysis, even though previous efforts suggest that
electronic effects may be pertinent.4g To examine the potential
electronic difference between these ketones, the carbonyl
stretching frequencies were measured, and a significant
disparity is observed (1733 cm−1 for S10 and 1753 cm−1 for
S11). The electronic difference between the ketones could be
the source of this large systematic error, and ongoing studies
are focused on the complex analysis associated with these
combined effects.
In conclusion, through the application of Sterimol parame-
ters and multivariate linear regression models, catalyst and
substrate steric effects have been correlated. Extensive
validation of these models resulted in excellent predictive
power. Although this analysis was limited to steric interactions,
the potential for applying a multivariate parametrization
approach to include electronic effects could greatly enhance
the application and breadth of the predictive power. Ultimately,
a substrate scope could be designed using DoE principles to
explore known reaction sensitivities, followed by regression
analysis to generate models capable of predicting the
performance of a wide range of substrates. A substrate scope
defined by a model, rather than the simple or available
substrates often reported, simplifies a key challenge in applying
asymmetric catalysis: knowing how to extrapolate catalyst
performance to substrate types not included in the original
scope evaluation. Not only would this impact the synthetic user
of the method, but the results would likely expose the key
features in the origin of asymmetric induction. These are goals
of our ongoing program.
(3) (a) Jacobsen, E. N.; Zhang, W.; Guler, M. L. J. Am. Chem. Soc.
1991, 113, 6703. (b) Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells,
J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J. J.
Am. Chem. Soc. 2008, 130, 16358. (c) Rodríguez-Escrich, S.; Reddy, K.
S.; Jimeno, C.; Colet, G.; Rodríguez-Escrich, C.; Sola,
̀
L. s.; Vidal-
Ferran, A.; Pericas, M. A. J. Org. Chem. 2008, 73, 5340. (d) Zuend, S.
̀
J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358. (e) Knowles, R.
R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20678.
(f) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132,
5030. (g) Gustafson, J. L.; Sigman, M. S.; Miller, S. J. Org. Lett. 2010,
12, 2794. (h) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133,
5062.
(4) (a) Jensen, K. H.; Sigman, M. S. Angew. Chem., Int. Ed. 2007, 46,
4748. (b) Miller, J. J.; Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47,
771. (c) Sigman, M. S.; Miller, J. J. J. Org. Chem. 2009, 74, 7633.
(d) Jensen, K. H.; Sigman, M. S. J. Org. Chem. 2010, 75, 7194.
(e) Jensen, K. H.; Webb, J. D.; Sigman, M. S. J. Am. Chem. Soc. 2010,
132, 17471. (f) Harper, K. C.; Sigman, M. S. Proc. Natl. Acad. Sci.
U.S.A. 2011, 108, 2179. (g) Harper, K. C.; Sigman, M. S. Science 2011,
333, 1875. (h) Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem.
2012, 4, 366.
(5) (a) Verloop, A. In Drug Design; Ariens, E. J., Ed.; Academic Press:
New York, 1976; Vol. III, p 133. (b) Verloop, A., Tipker, J. In
Biological Activity and Chemical Structure; Buisman, J. A., Ed.; Elsevier:
Amsterdam, 1977; p 63. (c) Verloop, A., Tipker, J. In QSAR in Drug
Design and Toxicology; Hadzi, D., Jerman-Blazic, B., Eds.; Elsevier:
Amsterdam, 1987; p 97. (d) Verloop, A. In IUPAC Pesticide Chemistry;
Miyamoto, J., Ed.; Pergamon: Oxford, 1983; Vol. 1, p 339.
(6) Deming, S. N.; Morgan, S. L. Experimental Design: A Chemometric
Approach, 2nd revised and expanded edition.; Elsevier: Amsterdam,
1993.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, model development, and character-
ization data for new substances. This material is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
K.C.H. thanks the ACS Division of Organic Chemistry and the
University of Utah Graduate School for fellowships. This work
was supported by the National Science Foundation (CHE-
1110599).
REFERENCES
■
(1) (a) Kozlowski, M. C.; Waters, S. P.; Skudlarek, J. W.; Evans, C. A.
Org. Lett. 2002, 4, 4391. (b) Kozlowski, M. C.; Panda, M. J. Mol.
Graphics Modell. 2002, 20, 399. (c) Lipkowitz, K. B.; Kozlowski, M. C.
Synlett 2003, 1547. (d) Fristrup, P.; Tanner, D.; Norrby, P.-O.
2485
dx.doi.org/10.1021/ja4001807 | J. Am. Chem. Soc. 2013, 135, 2482−2485