Y. S. Wagh et al. / Tetrahedron Letters 54 (2013) 1290–1293
1293
Chem. Soc. 2010, 132, 6900–6901; (g) Li, Y.; Xie, Y.; Zhang, R.; Jin, K.; Wang, X.;
Duan, C. J. Org. Chem. 2011, 76, 5444–5449.
bases, and metal catalysts. The synthesis of 2-aminobenzoxazoles
with the above procedure is versatile and efficient.
7. (a) Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J.
Org. Lett. 2011, 13, 3754–3757; (b) Lamani, M.; Prabhu, K. R. J. Org. Chem. 2011,
76, 7938–7944; (c) Wertz, S.; Kodama, S.; Studer, A. Angew. Chem., Int. Ed. 2011,
50, 11511–11515; (d) Wagh, Y. S.; Sawant, D. N.; Bhanage, B. M. Tetrahedron
Lett. 2012, 53, 3482–3485.
A. Supplementary data
Supplementary data associated with this article can be found, in
8. Joseph, J.; Kim, Y. J.; Chang, S. Chem. Eur. J. 2011, 17, 8294–8298.
9. (a) Paintner, F. F.; Allmendinger, L.; Bauschke, G. Synthesis 2001, 2113–2118;
(b) Kirsch, S.; Bach, T. Angew. Chem., Int. Ed. 2003, 42, 4685–4687; (c) More, J.
D.; Finney, N. S. Synlett 2003, 1307–1310; (d) VanderRoest, J. M.; Grieco, P. A. J.
Org. Chem. 1996, 61, 5316–5325; (e) Lach, F.; Moody, C. J. Tetrahedron Lett.
2000, 41, 6893–6896; (f) Bueno, J. M.; Coteron, J. M.; Chiara, J. L.; Fernandez-
Mayoralas, A.; Fiandor, J. M.; Valle, N. Tetrahedron Lett. 2000, 41, 4379–4382;
(g) Weigelt, D.; Krahmer, R.; Bruschke, K.; Hennig, L.; Findeisen, M.; Muller, D.;
Welzel, P. Tetrahedron 1999, 55, 687–698; (h) Gonzalez, M. A. Tetrahedron 2008,
64, 445–467.
10. (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584; (b) Zhdankin,
V. V. Curr. Org. Synth. 2005, 2, 121–145; (c) Stang, P. J.; Zhdankin, V. V. Chem.
Rev. 1996, 96, 1123–1178; (d) Zhu, J.; Germain, A. R.; Porco, J. A., Jr. Angew.
Chem., Int. Ed. 2004, 43, 1239–1243; (e) Dixon, M. J.; Andersen, O. A.; van
Aalten, D. M. F.; Eggleston, I. M. Eur. J. Org. Chem. 2006, 5002–5006; (f)
Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. J. Am. Chem. Soc. 2002,
124, 2245–2258.
References and notes
1. (a) Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1,
527–530; (b) Davidson, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486–
13489.
2. (a) Ricci, A. Amino Group Chemistry from Synthesis to the Life Sciences; Wiley-
VCH: Weinheim, 2008; (b) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284–
287; (c) Seregin, I. V.; Gevorgan, V. Chem. Soc. Rev. 2007, 36, 1173–1193. and
references therein.
3. (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013–3039; (b) Dyker, G. Angew.
Chem., Int. Ed. 1999, 38, 1698–1712; (c) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174–238; (e) Mori, A.; Sugie, A. Bull. Chem. Soc. Jpn. 2008,
81, 548–561; (f) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991–9016;
(g) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200–205; (h) Seregin, I. V.;
Gevorgan, V. Chem. Soc. Rev. 2007, 36, 1173–1193.
4. (a) Yasuo, S.; Megumi, Y.; Satoshi, Y.; Tomoko, S.; Midori, I.; Tetsutaro, N.;
Kokichi, S.; Fukio, K. J. Med. Chem. 1998, 41, 3015–3021; (b) Yoshida, S.;
Shiokawa, S.; Kawano, K.-I.; Ito, T.; Murakami, H.; Suzuki, H.; Yasuo, S. J. Med.
Chem. 2005, 48, 7075–7079; (c) Gao, M.; Wang, M.; Hutchins, G. D.; Zheng, Q.-
H. Eur. J. Med. Chem. 2008, 43, 1570–1574; (d) Sato, Y.; Imai, M.; Amano, K.;
Iwamatsu, K.; Konno, F.; Kurata, Y.; Sakakibara, S.; Hachisu, M.; Izumi, M.;
Matsuki, N.; Saito, H. Biol. Pharm. Bull. 1997, 20, 752–755; (e) Verderame, M. J.
Med. Chem. 1972, 15, 693–694.
5. (a) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861–
2873; (b) Murty, M. S. R.; Ram, K. R.; Rao, R. V.; Yadav, J. S.; Murty, U. S. N.;
Kumar, K. P. Med. Chem. Res. 2011, 20, 626–636.
6. (a) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed. 2009, 48,
9127–9130; (b) Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem., Int. Ed.
2010, 49, 9899–9903; (c) Wang, J.; Hou, J.-T.; Wen, J.; Zhang, J.; Yu, X.-Q. Chem.
Commun. 2011, 47, 3652–3654; (d) Monguchi, D.; Fujiwara, T.; Furukawa, H.;
Mori, A. Org. Lett. 2009, 11, 1607–1610; (e) Wang, Q.; Schreiber, S. L. Org. Lett.
2009, 11, 5178–5180; (f) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am.
11. Typical experimental procedure: Round bottom flask was charged with
benzoxazole (1a, 0.5 mmol) and morpholine (2a, 0.75 mmol) and the
solution was stirred in the absence of solvent for 30 min at 25 °C under an
air atmosphere. The crude product mixture was then diluted with CH2Cl2
(20 mL), washed with
a
saturated solution of NaCl, (3 Â 10 mL) and the
aqueous layer was again extracted with CH2Cl2 (3 Â 10 mL). The combined
organic layers were dried over Na2SO4 and concentrated under reduced
pressure to obtain pure amidine intermediate 3a in 98% yield. After dissolving
this amidine adduct in dichloromethane (3 mL), IBX (1.0 equiv) was added, and
the reaction mixture was stirred for 5 min at 25 °C under an air atmosphere.
The mixture was then diluted with CH2Cl2 (20 mL), washed with a saturated
solution of NaHCO3 (3 Â 10 mL), and the aqueous layer was extracted with
CH2Cl2 (3 Â 10 mL). The combined organic layers were dried over Na2SO4 and
concentrated under reduced pressure. The resulting residue was purified by
column chromatography on silica gel to afford desired product 4a in 95% yield.
All the prepared compounds were confirmed by comparing with their
authentic samples and were characterized by GC–MS (Shimadzu QP 2010),
1H NMR (Varian 500 MHz, JEOL JMTC-270/54/SS (JASTEC 400 MHz)) (see
Supplementary data).