10.1002/anie.202011841
Angewandte Chemie International Edition
RESEARCH ARTICLE
Angew. Chem. Int. Ed. 2018, 57, 10625-10629; Angew. Chem. 2018, 130,
10785-10789; f) L. Mei, J. M. Veleta, T. L. Gianetti, J. Am. Chem. Soc.
2020, 142, 12056-12061; g) T. Adak, C. Hu, M. Rudolph, J. Li, A. S. K.
Hashmi, Org. Lett. 2020, 22, 5640-5644.
Conclusion
In summary, we described efficient visible-light (410 nm)
[Pt(O^N^C^N)] photocatalysis that realized (i) reductive coupling
of aryl chlorides/bromides with terminal/internal aryl alkenes to
give anti-Markonikov hydroarylated compounds via aryl radical
intermediacy and (ii) cyclization of acrylanilidines to access a
variety of 3,4-dihydroquinolinones.
[6]
I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res. 2016,
49, 1566-1577.
[7]
[8]
I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725-728.
I. Ghosh, R. S. Shaikh, B. König, Angew. Chem. Int. Ed. 2017, 56, 8544-
8549; Angew. Chem. 2017, 129, 8664-8669.
[9]
a) Y. Yan, P. Zhou, D. P. Rotella, R. Feenstra, C. G. Kruse, J.-H.
Reinders, M. v. d. Neut, M. Lai, J. Zhang, D. M. Kowal, T. Carrick, K. L.
Marquis, M. H. Pausch, A. J. Robichaud, Bioorg. Med. Chem. Lett. 2010,
20, 2983-2986; b) N. Igoe, E. D. Bayle, C. Tallant, O. Fedorov, J. C. Meier,
P. Savitsky, C. Rogers, Y. Morias, S. Scholze, H. Boyd, D. Cunoosamy,
D. M. Andrews, A. Cheasty, P. E. Brennan, S. Müller, S. Knapp, P. V.
Fish, J. Med. Chem. 2017, 60, 6998-7011.
Acknowledgements
This work was supported by Guangdong Major Project of Basic
and Applied Basic Research (2019B030302009), Shenzhen
[10] T. Bach, J. P. Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000-1045; Angew.
Chem. 2011, 123, 1032-1077.
Science
and
Technology
Innovation
Commission
(JCYJ20180508162429786), China Postdoctoral Science
Foundation (2019M662156) and Hong Kong Research Grant
Council (HKU 17330416). We thank the Southern University of
Science and Technology for financial support. Dr Wai-Pong To
and Mr Yu-Kan Tang were thanked for the help in photophysical
measurements.
[11] a) A. J.-L. Ayitou, J. Sivaguru, J. Am. Chem. Soc. 2009, 131, 5036-5037;
b) A. J.-L. Ayitou, J. Sivaguru, Chem. Commun. 2011, 47, 2568-2570; c)
R. Raghunathan, S. Jockusch, M. P. Sibi, J. Sivaguru, J. Photochem.
Photobiol. A Chem. 2016, 331, 84-88.
[12] Z. Kuang, B. Li, Q. Song, Chem. Commun. 2018, 54, 34-37.
[13] a) Q.-Y. Meng, T. Lei, L.-M. Zhao, C.-J. Wu, J.-J. Zhong, X.-W. Gao, C.-
H. Tung, L.-Z. Wu, Org. Lett. 2014, 16, 5968-5971; b) P. Ye, D.-H. Wang,
B. Chen, Q.-Y. Meng, C.-H. Tung, L.-Z. Wu, Sci. China Chem. 2016, 59,
175-179; c) J.-J. Zhong, C. Yang, X.-Y. Chang, C. Zou, W. Lu, C.-M. Che,
Chem. Commun. 2017, 53, 8948-8951; d) J.-J. Zhong, W.-P. To, Y. Liu,
W. Lu, C.-M. Che, Chem. Sci. 2019, 10, 4883-4889.
Keywords: aryl halides • hydroarylation • intramolecular
cyclization • photocatalysis • platinum
[1]
a) V. Bacauanu, S. Cardinal, M. Yamauchi, M. Kondo, D. F. Fernández,
R. Remy, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2018, 57, 12543-
12548; Angew. Chem. 2018, 130, 12723-12728; b) I. B. Perry, T. F.
Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan,
Nature 2018, 560, 70-75; c) M. J. González, B. Breit, Chem. Eur. J. 2019,
25, 15746-15750; d) H. A. Sakai, W. Liu, C. C. Le, D. W. C. MacMillan,
J. Am. Chem. Soc. 2020, 142, 11691-11697; e) M. Yuan, Z. Song, S. O.
Badir, G. A. Molander, O. Gutierrez, J. Am. Chem. Soc. 2020, 142, 7225-
7234; f) M. Koy, P. Bellotti, F. Katzenburg, C. G. Daniliuc, F. Glorius,
Angew. Chem. Int. Ed. 2020, 59, 2375-2379; Angew. Chem. 2020, 132,
2395-2399.
[14] a) Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2010, 39, 638-655; b) H. Yersin,
A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev.
2011, 255, 2622-2652.
[15] a) C.-M. Che, L. G. Butler, P. J. Grunthaner, H. B. Gray, Inorg. Chem.
1985, 24, 4662-4665; b) C. N. Pettijohn, E. B. Jochnowitx, B. Chuong, J.
K. Nagle, A. Vogler, Coord. Chem. Rev. 1998, 171, 85-92; c) S. B.
Harkins, J. C. Peters, Inorg. Chem. 2006, 45, 4316-4318; d) C.-Y. Sun,
W.-P. To, F.-F. Hung, X.-L. Wang, Z.-M. Su, C.-M. Che, Chem. Sci. 2018,
9, 2357-2364.
[16] K. Li, Q. Wan, C. Yang, X..-Y. Chang, K.-H. Low, C.-M. Che, Angew.
Chem. Int. Ed. 2018, 57, 14129-14133; Angew. Chem. 2018, 130,
14325-14329.
[2]
a) S. Cacchi, Pure Appl. Chem. 1990, 62, 713−722; b) W. Kong, Q. Wang,
J. Zhu, Angew. Chem. Int. Ed. 2017, 3987-3991; Angew. Chem. 2017,
4045-4049; c) L, Jin, J, Qian, N. Sun, B. Hu, Z. Shen, X. Hu, Chem.
Comm. 2018, 54, 5752-5755; d) C. Wang, G. Xiao, T. Guo, Y. Ding, X.
Wu, T.-P. Loh, J. Am. Chem. Soc. 2018, 140, 9332-9336; e) J. A. Gurak,
K. M. Engle, ACS Catal. 2018, 8, 8987−8992; f) J. Nguyen, A. Chong, G.
Lalic, Chem. Sci. 2019, 10, 3231-3236; g) L.J. Oxtoby, J. A. Gurak, S. R.
Wisniewski, M. D. Eastgate, K. M. Engle, Trends Chem. 2019, 1, 573-
587.
[17] a) G. Cheng, P. K. Chow, S. C. F. Kui, C. C. Kwok, C.-M. Che, Adv. Mater.
2013, 25, 6765-6770; b) S. C. F. Kui, P. K. Chow, G. S. M. Tong, S.-L.
Lai, G. Cheng, C.-C. Kwok, K.-H. Low, M. Y. Ko, C.-M. Che, Chem. Eur.
J. 2013, 19, 69-73; c) S. C. F. Kui, P. K. Chow, G. Cheng, C. C. Kwok,
C. L. Kwong, K. H. Low, C.-M. Che, Chem. Commun. 2013, 49, 1497-
1499.
[18] E. Speckmeier, P. J. W. Fuchs, K. Zeitler, Chem. Sci. 2018, 9, 7096-
7103.
[3]
a) A. Arora, K. A. Teegardin, J. D. Weaver, Org. Lett. 2015, 17, 3722-
3725. b) A. Singh, J. J. Kubik, J. D. Weaver, Chem. Sci. 2015, 6, 7206-
7212; c) R. A. Aycock, D. B. Vogt, N. T. Jui, Chem. Sci. 2017, 8, 7998-
8003; d) A. J. Boyington, M.-L. Y. Riu, N. T. Jui, J. Am. Chem. Soc. 2017,
139, 6582-6585; e) C. P. Seath, D. B. Vogt, Z. Xu, A. J. Boyington, N. T.
Jui, J. Am. Chem. Soc. 2018, 140, 15525-15534; f) A. J. Boyington, C.
P. Seath, A. M. Zearfoss, Z. Xu, N. T. Jui, J. Am. Chem. Soc. 2019, 141,
4147-4153.
[19] X.-W. Chen, Y. Liu, X.-Q. Jin, Y.-Y. Sun, S.-L. Gu, L. Fu, J.-Q. Li, Org.
Process Res. Dev. 2016, 20, 1662-1667.
[20] a) A. Klein, E. J. L. McInnes, W. Kaim, J. Chem. Soc. Dalton Trans. 2002,
2371–2378; b) S. Roy, I. Hartenbach, B. Sarkar, Eur. J. Inorg. Chem.
2009, 2009, 2553–2558; c) J. J. Loughrey, S. Sproules, E. J. L. McInnes,
M. J. Hardie, M. A. Halcrow, Chem. Eur. J. 2014, 20, 6272–6276.
[21] a) A. Klein, E. J. L. McInnes, T. Scheiring, S. Zališ, J. Chem. Soc.
Faraday Trans. 1998, 94, 2979–2984; b) E. A. M. Geary, K. L. McCall, A.
Turner, P. R. Murray, E. J. L. McInnes, L. A. Jack, L. J. Yellowlees, N.
Robertson, Dalton Trans. 2008, 3701–3708; c) P. Murray, L. Jack, E. J.
L. McInnes, L. J. Yellowlees, Dalton. Trans. 2010, 39, 4179–4185.
[22] a) D. D. M. Wayner, D. J. McPhee, D. Griller, J. Am. Chem. Soc. 1988,
110, 132-137; b) H. Wang, Y. Gao, C. Zhou, G. Li, J. Am. Chem. Soc.
2020, 142, 8122-8129.
[4]
[5]
a) J.-P. Goddard, C. Ollivier, L. Fensterbank, Acc. Chem. Res. 2016, 49,
1924-1936; b) T. Patra, S. Mukherjee, J. Ma, F. Strieth-Kalthoff, F.
Glorius, Angew. Chem. Int. Ed. 2019, 58, 10514-10520; Angew. Chem.
2019, 131, 10624-10630.
a) Y. Chen, C. Shu, F. Luo, X. Xiao, G. Zhu, Chem. Commun. 2018, 54,
5373-5376; b) N. Micic, A. Polyzos, Org. Lett. 2018, 20, 4663-4666; c) A.
A. N. de Souza, N. S. Silva, A. V. Müller, A. S. Polo, T. J. Brocksom, K.
T. de Oliveira, J. Org. Chem. 2018, 83, 15077-15086; d) J. Xie, K. Sekine,
S. Witzel, P. Krämer, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew.
Chem. Int. Ed. 2018, 57, 16648-16653; Angew. Chem. 2018, 130,
16890-16895; e) Y.-F. Liang, R. Steinbock, L. Yang, L. Ackermann,
[23] a) F. Strieth-Kalthoff, C. Henkel, M. Teders, A. Kahnt, W. Knolle, A.
Gomez-Suarez, K. Dirian, W. Alex, K. Bergander, C. G. Daniliuc, B. Abel,
D. M. Guldi, F. Glorius, Chem 2019, 5, 2183-2194; b) F. Strieth-Kalthoff,
F. Glorius, Chem 2020, 6, 1888-1903.
This article is protected by copyright. All rights reserved.