Journal of the American Chemical Society
Communication
(3) (a) Haidekker, M. A.; Theodorakis, E. A. Org. Biomol. Chem.
2007, 5, 1669. (b) Kaliviotis, E.; Yianneskis, M. Proc. Inst. Mech. Eng.,
Part H 2007, 221, 887.
(4) Kuimova, M. K.; Botchway, S. W.; Parker, A. W.; Balaz, M.;
Collins, H. A.; Anderson, H. L.; Suhling, K.; Ogilby, P. R. Nat. Chem
2009, 1, 69.
(5) (a) Dell’Angelica, E. C.; Mullins, C.; Caplan, S.; Bonifacino, J. S.
FASEB J. 2000, 14, 1265. (b) Burleigh, M. C.; Barrett, A. J.; Lazarus,
G. S. Biochem. J. 1974, 137, 387.
(6) (a) Futerman, A. H.; van Meer, G. Nat. Rev. Mol. Cell Biol. 2004,
5, 554. (b) Vellodi, A. Br. J. Haematol. 2005, 128, 413. (c) Neufeld, E.
F. Annu. Rev. Biochem. 1991, 60, 257. (d) Simonsa, K.; Gruenberg, J.
Trends Cell Biol. 2000, 10, 459.
(7) (a) Harkness, J. Biorheology 1971, 8, 171. (b) Huizing, M.; Helip-
Wooley, A.; Westbroek, W.; Gunay-Aygun, M.; Gahl, W. A. Annu. Rev.
Genomics Hum. Genet. 2008, 9, 359.
(8) (a) Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis, E.
A. J. Am. Chem. Soc. 2006, 128, 398. (b) Haidekker, M. A.; Ling, T.;
Anglo, M.; Stevens, H. Y.; Frangos, J. A.; Theodorakis, E. A. Chem.
Biol. 2001, 8, 123.
(9) (a) Kuimova, M. K.; Yahioglu, G.; Levitt, J. A.; Suhling, K. J. Am.
Chem. Soc. 2008, 130, 6672. (b) Levitt, J. A.; Kuimova, M. K.;
Yahioglu, G.; Chung, P. H.; Suhling, K.; Phillips, D. J. Phys. Chem. C
2009, 113, 11634.
(10) Peng, X. J.; Yang, Z. G.; Wang, J. Y.; Fan, J. L.; He, Y. X.; Song,
F. L.; Wang, B. S.; Sun, S. G.; Qu, J. L.; Qi, J.; Yan, M. J. Am. Chem.
Soc. 2011, 133, 6626.
stimulation results in an increase in lysosomal viscosity. In view
of the fact that these cells’ lysosomal viscosity before
stimulation was only ∼67 cP, the increase in magnitude of
∼20 cP is remarkable. The other stimulating agent was
chloroquine, which is a typical toxicant for lysosomes because
its stronger basicity can raise the lysosomal pH.16 However,
even at chloroquine concentrations as high as 20 μM, the FLIM
images revealed that the fluorescence lifetimes within the
lysosomes changed very slightly (see the SI). The average
lifetime after chloroquine stimulation for 20 min was ∼2.06 ns,
which is almost the same as the original lifetime (2.05 ns).
Thus, under our stimulation conditions, chloroquine stim-
ulation did not greatly influence the lysosomal viscosity, in
contrast to dexamethasone stimulation. The above experiments
demonstrate that application of Lyso-V in FLIM to monitor
lysosmal viscosity changes will be a valuable method in
lysosome-related pharmacology and toxicology studies.
In conclusion, we have developed Lyso-V, the first
fluorescent probe for lysosomal viscosity, in a straightforward
manner by attaching a morpholine moiety to a BODIPY rotor.
Because of its lysosome-activated fluorescence characteristics,
Lyso-V is an ideal lysosomal tracer with high spatial and
temporal resolution under laser confocal microscopy. More
importantly, Lyso-V can be practically applied in real-time
quantification of lysosomal viscosity changes in live cells
through the FLIM technique. For the first time, lysosomal
viscosity data for MCF-7 cells have been obtained and the
different influences of two typical lysosome-stimulating drugs
on the lysosomal viscosity have been discovered.
(11) Yu, H. B.; Xiao, Y.; Jin, L. J. J. Am. Chem. Soc. 2012, 134, 17486.
(12) de Silva, A. P.; Gunaratne, H. Q. M.; Gunnlaugsson, T.; Huxley,
A. J. M.; McCoy, C. P.; Fademacher, J. T.; Rice, T. E. Chem. Rev. 1997,
97, 1515.
(13) Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2009, 10,
1389.
(14) Berezin, M. Y.; Achilefu, S. Chem. Rev. 2010, 110, 2641.
(15) (a) Hinz, B.; Hirschelmann, R. Pharm. Res. 2000, 17, 1489.
(b) Ackerman, N. R.; Beebe, J. R. J. Pharmacol. Exp. Ther. 1975, 193,
603.
(16) Gonzalez-Noriega, A.; Grubb, J. H.; Talkad, V.; Sly, W. S. J. Cell
Biol. 1980, 85, 839−852.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthesis, characterization, and experimental details. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by National Natural Science
Foundation of China (21174022 and 21173217), the National
Basic Research Program of China (2013CB733702), and the
Specialized Research Fund for the Doctoral Program of Higher
Education (20110041110009). We also thank Prof. Junle Qu at
Shenzhen University for helpful discussions on FLIM.
REFERENCES
■
(1) (a) Elcock, A. H. Curr. Opin. Struct. Biol. 2010, 20, 196.
(b) Minton, A. P. J. Biol. Chem. 2001, 276, 10577.
(2) (a) Luby, P. K. Int. Rev. Cytol. 2000, 192, 189. (b) Stutts, M. J.;
Canessa, C. M.; Olsen, J. C.; Hamrick, M.; Cohn, J. A.; Rossier, B. C.;
Boucher, R. C. Science 1995, 268, 847. (c) Reinhart, W. H. Biorheology
2001, 38, 203. (d) Uchimuar, I.; Numano, F. Diabetes Front. 1997, 8,
33. (e) Simon, A.; Gariepy, J.; Chironi, G.; Megnien, J. L.; Levenson, J.
J. Hypertension 2002, 20, 159. (f) Moriarty, P. M.; Gibson, C. A.
Cardiovasc. Rev. Rep. 2003, 24, 321. (g) Bosman, G. J. C. G. M.;
Bartholomeus, I. G. P.; Grip, D. W. J. Gerontology 1991, 37, 95.
2906
dx.doi.org/10.1021/ja311688g | J. Am. Chem. Soc. 2013, 135, 2903−2906