Paper
Dalton Transactions
9 J. F. Endicott, C.-L. Wong, T. Inoue and P. Natarajan, Inorg.
Chem., 1979, 18, 450.
Conclusions
Two key classes of reactions have been demonstrated with a 10 M. T. Atlay, M. Preece, G. Strukul and B. R. James, J. Chem.
late metal hydroperoxo. Though unreactive towards unsatu- Soc., Chem. Commun., 1982, 406.
rated organic substrates, diiridium hydroperoxo complex 2 11 M. T. Atlay, M. Preece, G. Strukul and B. R. James,
undergoes oxygen atom transfer with phosphines to generate a Can. J. Chem., 1983, 61, 1332.
novel diiridium hydroxo product 3. The structural and spectro- 12 A. Bakac, J. Am. Chem. Soc., 1997, 119, 10726.
scopic characterization of 3 adds to a growing library of metal– 13 S. Thyagarajan, C. D. Incarvito, A. L. Rheingold and
metal bonded M2II,II(M = Rh, Ir) complexes supported by two
K. H. Theopold, Chem. Commun., 2001, 2198.
bridging tfepma ligands. Acids induce cleavage of the O–O 14 W. Cui and B. B. Wayland, J. Am. Chem. Soc., 2006, 128,
bond in hydroperoxo complex 2 to furnish an equivalent of 10350.
water, which is initially bound to the iridium in aqua complex 15 D. D. Wick and K. I. Goldberg, J. Am. Chem. Soc., 1999, 121,
4, and gradually is displaced by chloride to form the sym- 11900.
metric Ir2II,IICl4 product 5. With a weaker acid source, 2,6-luti- 16 M. M. Konnick, B. A. Gandhi, I. A. Guzei and S. S. Stahl,
dinium, intermediate 4 is intercepted by the conjugate base Angew. Chem., Int. Ed., 2006, 45, 2904.
and instead forms hydroxo complex 3 as the major product. 17 M. C. Denney, N. A. Smythe, K. L. Cetto, R. A. Kemp and
These reactions with acids provide insight into the O–O bond K. I. Goldberg, J. Am. Chem. Soc., 2006, 128, 2508.
cleavage step involved in the reduction of oxygen to water 18 E. Szajna-Fuller and A. Bakac, Inorg. Chem., 2010, 49,
mediated by isostructural dirhodium complexes, and begin to 781.
define plausible elementary steps that occur beyond the rate- 19 J. M. Keith, R. J. Nielsen, J. Oxgaard and W. A. Goddard,
determining oxygen activation chemistry. Some details related J. Am. Chem. Soc., 2005, 127, 13172.
to this reactivity of the hydroperxo remain outstanding. We are 20 M. M. Konnick and S. S. Stahl, J. Am. Chem. Soc., 2008, 130,
particularly interested in defining short-lived intermediates 5753.
that are involved in the oxygen–oxygen bond cleavage reaction. 21 M. M. Konnick, N. Decharin, B. V. Popp and S. S. Stahl,
1
2
In addition, though we can rule out formation of eq. of O2,
Chem. Sci., 2011, 2, 326.
the fate of the second oxygen atom in the oxygen–oxygen bond 22 N. Decharin and S. S. Stahl, J. Am. Chem. Soc., 2011, 133,
cleavage reaction is unresolved. As we continue our studies of 5732.
oxygen activation and reduction chemistry, subsequent work 23 N. Decharin, B. V. Popp and S. S. Stahl, J. Am. Chem. Soc.,
will aim to more precisely define the pathways by which acido- 2011, 133, 13268.
lysis induces liberation of water from rhodium and iridium 24 G. Strukul, R. Ros and R. A. Michelin, Inorg. Chem., 1982,
hydroperoxo complexes.
21, 495.
25 K. D. Karlin, P. Ghosh, R. W. Cruse, A. Farooq, Y. Gultneh,
R. R. Jacobson, N. J. Blackburn, R. W. Strange and
J. Zubieta, J. Am. Chem. Soc., 1988, 110, 6769.
26 T. Miyaji, M. Kujime, S. Hikichi, Y. Moro-oka and M. Akita,
Inorg. Chem., 2002, 41, 5286.
27 W.-D. Wang, A. Bakac and J. H. Espenson, Inorg. Chem.,
1995, 34, 4049.
28 S. A. Mirza, B. Bocquet, C. Robyr, S. Thomi and
A. F. Williams, Inorg. Chem., 1996, 35, 1332.
29 O. Pestovsky and A. Bakac, J. Am. Chem. Soc., 2003, 125,
14714.
Acknowledgements
This work was supported by NSF Grant CHE-1112154. Grants
from the NSF (CHE-9808061 and DBI-9729592) support the
Department of Chemistry Instrumentation Facility. T.S.T.
acknowledges the Fannie and John Hertz Foundation for a
graduate research fellowship.
30 M. L. Man, J. Zhu, S. M. Ng, Z. Zhou, C. Yin, Z. Lin and
C. P. Lau, Organometallics, 2004, 23, 6214.
Notes and references
1 M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Chem. 31 T. S. Teets and D. G. Nocera, J. Am. Chem. Soc., 2011, 133,
Rev., 2004, 104, 939. 17796.
2 L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, Chem. 32 T. S. Teets, T. R. Cook, B. D. McCarthy and D. G. Nocera,
Rev., 2004, 104, 1013.
J. Am. Chem. Soc., 2011, 133, 8114.
3 E. A. Lewis and W. B. Tolman, Chem. Rev., 2004, 104, 1047.
4 J. Rosenthal and D. G. Nocera, Acc. Chem. Res., 2007, 40,
543.
5 S. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400.
6 H. L. Roberts and W. R. Symes, J. Chem. Soc. A, 1968, 1450.
7 L. E. Johnston and J. A. Page, Can. J. Chem., 1969, 47, 4241.
33 B. L. Booth, R. N. Haszeldine and G. R. H. Neuss, J. Chem.
Soc., Chem. Commun., 1972, 1074.
34 B. L. Booth, R. N. Haszeldine and G. R. H. Neuss, J. Chem.
Soc., Dalton Trans., 1982, 37.
35 B. L. Booth, R. N. Haszeldine and G. R. H. Neuss, J. Chem.
Soc., Dalton Trans., 1982, 511.
8 R. D. Gillard, B. T. Heaton and D. H. Vaughan, J. Chem. 36 H. Mimoun, R. Charpentier, A. Mitschler, J. Fischer and
Soc. A, 1970, 3126.
R. Weiss, J. Am. Chem. Soc., 1980, 102, 1047.
3526 | Dalton Trans., 2013, 42, 3521–3527
This journal is © The Royal Society of Chemistry 2013