A R T I C L E S
Litvinchuk et al.
Translation of the “secret” of bacterial toxins on how to form
perfect pores from hydrophilic precursors to the rational design
of “ideal” synthetic multifunctional pores was challenging.
Rigid-rod â-barrels 2 with hydrophobic leucines (L) at the outer
and catalytic histidines (H) at the inner barrel surface form
synthetic multifunctional “HH pores” that are labile (single pore
lifetime τ ) 12 ms)14 and stable (cM profile with n ) 1).15 The
introduction of internal arginine-histidine dyads gives inert
(τ > 1 min)16 but stable (n e 1)10 RH pores 3. Destabilization
by external LWV triads gives unstable (n ) 4) but labile (τ <
1 ms) RH pores 4.10 Counteranion-mediated stabilization by
internal arginines (R)16,17 and â-sheet destabilization by external
tryptophans10 have been evoked to rationalize these character-
(2) Recent publications on synthetic ion channels and pores (see also refs 4-6,
9-12, and 14-26): (a) Pe´rez-Herna´ndez, N.; Pe´rez, C.; Rodr´ıguez, M.
L.; Foces-Foces, C.; Tolstoy, P. M.; Limbach, H. H.; Morales, E. Q.; Pe´rez,
R.; Mart´ın, J. D. Bioorg. Med. Chem. 2004, 12, 1305-1314. (b) Hall, A.
C.; Suarez, C.; Hom-Choudhury, A.; Manu, A. N. A.; Hall, C. D.; Kirkovits,
G. J.; Ghiriviga, I. Org. Biomol. Chem. 2003, 1, 2973-2982. (c) Fidzinski,
P.; Knoll, A.; Rosenthal, R.; Schrey, A.; Vescovi, A.; Koert, U.; Wiederholt,
M.; Strauss, O. Chem. Biol. 2003, 10, 35-43. (d) Vescovi, A.; Knoll, A.;
Koert, U. Org. Biomol. Chem. 2003, 1, 2983-2997. (e) Eggers, P. K.;
Fyles, T. M.; Mitchell, K. D. D.; Sutherland, T. J. Org. Chem. 2003, 68,
1050-1058. (f) Cameron, L. M.; Fyles, T. M.; Hu, C. J. Org. Chem. 2002,
67, 1548-1553. (g) De Riccardis, F.; Di Philippo, M.; Garrisi, D.; Izzo,
I.; Mancin, F.; Pasquato, L.; Scrimin, P.; Tecilla, P. Chem. Commun. 2002,
3066-3067. (h) Avallone, E.; Izzo, I.; Vuolo, G.; Costabile, M.; Garrisi,
D.; Pasquato, L.; Scrimin, P.; Tecilla, P.; De Riccardis, F. Tetrahedron
Lett. 2003, 44, 6121-6124. (i) Arnt, L.; Tew, G. N. Langmuir 2003, 19,
2404-2408. (j) Zhang, J.; Jing, B.; Regen, S. L. J. Am. Chem. Soc. 2003,
125, 13984-13987. (k) Murthy, N.; Campbell, J.; Fausto, N.; Hoffman,
A. S.; Stayton, P. S. Bioconjugate Chem. 2003, 14, 412-419. (l) Murthy,
N.; Campbell, J.; Fausto, N.; Hoffman, A. S.; Stayton, P. S. J. Controlled
Release 2003, 89, 365-374. (m) Sisson, A. D.; Clare, J. P.; Taylor, L. H.;
Charmant, J. P. H.; Davis, A. P. Chem. Commun. 2003, 2246-2247. (n)
Epand, R. F.; Umezawa, N.; Porter, E. A.; Gellman, S. H.; Epand, R. M.
Eur. J. Biochem. 2003, 270, 1240-1248. (o) Arvidsson, P. I.; Ryder, N.
S.; Weiss, H. M.; Gross, G.; Kretz, O.; Woessner, R.; Seebach, D.
ChemBioChem 2003, 4, 1345-1347. (p) Koulov, A. V.; Lambert, T. N.;
Shukla, R.; Jain, M.; Boon, J. M.; Smith, B. D.; Li, H.; Sheppard, D. N.;
Joos, J.-B.; Clare, J. P.; Davis, A. P. Angew. Chem., Int. Ed. 2003, 42,
4931-4933. (q) Schlesinger, P. H.; Djedovic, N. K.; Ferdani, R.; Pajewska,
J.; Pajewski, R.; Gokel, G. W. Chem. Commun. 2003, 308-309. (r)
Djedovic, N.; Ferdani, R.; Harder, E.; Pajewska, J.; Pajewski, R.;
Schlesinger, P. H.; Gokel, G. W. Chem. Commun. 2003, 2862-2863. (s)
Schlesinger, P. H.; Ferdani, R.; Pajewska, J.; Pajewski, R.; Gokel, G. W.
New J. Chem. 2003, 26, 60-67. (t) Guo, X.; MacKay, J. A.; Szoka, F. C.
Biophys. J. 2003, 84, 1784-1795. (u) Sidorov, V.; Kotch, F. W.; Kuebler,
J. L.; Lam. Y.-F.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 2840-2841.
(v) Boon, J. M.; Lambert, T. N.; Sisson, A. L.; Davis, A. P.; Smith, B. D.
J. Am. Chem. Soc. 2003, 125, 8195-8201. (w) Sidorov, V.; Kotch, F. W.;
Abdrakhmanova, G.; Mizani, R.; Fettinger, J. C.; Davis, J. T. J. Am. Chem.
Soc. 2002, 124, 2267-2278. (x) Sanchez-Quesada, J.; Isler, M. P.; Ghadiri,
M. R. J. Am. Chem. Soc. 2002, 124, 10004-10005. (y) Schlesinger, P. H.;
Ferdani, R.; Liu, J.; Pajewska, J.; Pajewski, R.; Saito, M.; Shabany, H.;
Gokel, G. W. J. Am. Chem. Soc. 2002, 124, 1848-1849. (z) Schlesinger,
P. H.; Ferdani, R.; Pajewski, R.; Pajewska, J.; Gokel, G. W. Chem.
Commun. 2002, 840-841. (aa) Lambert, T. N.; Boon, J. M.; Smith, B. D.;
Pe´rez-Payan, M. N.; Davis, A. P. J. Am. Chem. Soc. 2002, 124, 5276-
5277. (bb) Porter, E. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc.
2002, 124, 7324-7330. (cc) Asokan, A.; Cho, M. J. J. Pharm. Sci. 2002,
91, 903-913. (dd) Tew, G. N.; Liu, D.; Chen, B.; Doerksen, R. J.; Kaplan,
J.; Carroll, P. J.; Klein, M. L.; DeGrado, W. F. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 5110-5114. (ee) Arnt, L.; Tew, G. N. J. Am. Chem. Soc. 2002,
124, 7664-7665. (ff) Bandyopadhyay, P.; Bandyopadhyay, P.; Regen, S.
L. J. Am. Chem. Soc. 2002, 124, 11254-11255. (gg) Habaue, S.; Morita,
M.; Okamoto, Y. Macromolecules 2002, 35, 2432-2434. (hh) Habaue,
S.; Morita, M.; Okamoto, Y. Polymer 2002, 43, 3469-3474. (ii) Leevy,
W. M.; Donato, G. M.; Ferdani, R.; Goldman, W. E.; Schlesinger, P. H.;
Gokel, G. W. J. Am. Chem. Soc. 2002, 124, 9022-9023. (jj) Vandenburg,
Y. R.; Smith, B. D.; Biron, E.; Voyer, N. Chem. Commun. 2002, 1694-
1695. (kk) Bandyopadhyay, P.; Bandyopadhyay, P.; Regen, S. L. Biocon-
jugate Chem. 2002, 13, 1314-1318. (ll) Raguse, T. L.; Porter, E. A.;
Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 12774-12785.
(mm) Shankaramma, S. C.; Athanassiou, Z.; Zerbe, O.; Moehle, K.; Mouton,
C.; Bernardini, F.; Vrijbloed, J. W.; Obrecht, D.; Robinson, J. A.
ChemBioChem 2002, 3, 1126-1133. (nn) Ranganathan, D.; Samant, M.
P.; Nagaraj, R.; Bikshapathy, E. Tetrahedron Lett. 2002, 43, 5145-5147.
(oo) Sanderson, J. M.; Yazdani, S. Chem. Commun. 2002, 1154-1155.
(3) Reviews of synthetic multifunctional pores: (a) Sakai, N.; Matile, S. Chem.
Commun. 2003, 2514-2523. (b) Matile, S. Chem. Soc. ReV. 2001, 30, 158-
167.
Figure 1. Multifunctional rigid-rod â-barrels as pores. Endergonic (n >
1) and exergonic (n e 1, eq 1) self-assembly of monomeric rigid-rod
molecules 1m-4m into aqueous or transmembrane, inert or labile â-barrel
prepores or pores 1-4 depends on the nature of the amino acid residues at
the outer (gold) and inner (blue) barrel surface (single-letter abbreviations;
G ) -OCH2CO-). We caution that suprastructures in Figures 1 and 2 are
in part speculative representations that are, however, consistent with
experimental data and molecular models (see below).
fibrosis,5e the ideal synthetic multifunctional pore sensor may,
therefore, be an unstable but inert hydrophobic supramolecule
that assembles from a pool of hydrophilic precursors in the
media. Here, we report the first multifunctional rigid-rod â-barrel
pore with these ideal characteristics (i.e., 1, Figure 1).
(1) Recent/pertinent reviews/accounts on synthetic ion channels and pores (see
also refs 3-6): (a) Koert, U.; Ed. Synthetic Ion Channels. Bioorg. Med.
Chem. 2004, 12, 1277-1350. (b) Gokel, G. W.; Schlesinger, P. H.; Djedovi,
N. K.; Ferdani, R.; Harder, E. C.; Hu, J.; Leevy, W. M.; Pajewska, J.;
Pajewski, R.; Weber, M. E. Bioorg. Med. Chem. 2004, 12, 1291-1304.
(c) Biron, E.; Otis, F.; Meillon, J.-C.; Robitaille, M.; Lamothe, J.; Van
Hove, P.; Cormier, M.-E.; Voyer, N. Bioorg. Med. Chem. 2004, 12, 1279-
1290. (d) Smith, B. D.; Lambert, T. N. Chem. Commun. 2003, 2261-
2268. (e) Guo, X.; Szoka, F. C. Acc. Chem. Res. 2003, 36, 335-341. (f)
Koert, U.; Reiss, P. J. Supramol. Chem. 2003, 2, 29-37. (g) Boon, J. M.;
Smith, B. D. Curr. Opin. Chem. Biol. 2002, 6, 749-756. (h) Savage, P.
B.; Li, C.; Taotafa, U.; Ding, B.; Guan, Q. FEBS Microbiol. Lett. 2002,
217, 1-7. (i) Gokel, G. W.; Mukhopadhyay, A. Chem. Soc. ReV. 2001,
30, 274-286. (j) Gokel, G. W. Chem. Eur. J. 2001, 7, 33-39. (k) Matile,
S. Chem. Rec. 2001, 1, 162-172. (l) Cheng, R. P.; Gellman, S. H.;
DeGrado, W. F. Chem. ReV. 2001, 101, 3219-3232. (m) Shum, P.; Kim,
J.-M.; Thompson, D. H. AdV. Drug DeliVery ReV. 2001, 53, 273-284. (n)
Ranganathan, D. Acc. Chem. Res. 2001, 34, 919-930. (o) Bong, D. T.;
Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001,
40, 988-1011. (p) Sakai, N.; Matile, S. Chem. Eur. J. 2000, 6, 1731-
1737. (q) Kirkovits, G. J.; Hall, C. D. AdV. Supramol. Chem. 2000, 7, 1-47.
(r) Scrimin, P.; Tecilla, P. Curr. Opin. Chem. Biol. 1999, 3, 730-735. (s)
Fyles, T. M. Curr. Opin. Chem. Biol. 1997, 1, 497-505. (t) Kobuke, Y.
AdV. Supramol. Chem. 1997, 4, 163-210. (u) Koert, U. Chem. Unserer Z.
1997, 31, 20-26. (v) Gokel, G. W.; Murillo, O. Acc. Chem. Res. 1996,
29, 425-432. (w) Fyles, T. M.; van Straaten-Nijenhuis, W. F. In
ComprehensiVe Supramolecular Chemistry; Reinhoudt, N. D., Ed.; Elsevi-
er: Oxford, 1996; Vol. 10, pp 53-77. (x) Voyer, N. Top. Curr. Chem.
1996, 184, 1-37. (y) Fuhrhop, J.-H.; Ko¨ning, J. Membranes and Molecular
Assemblies: The Synkinetic Approach; The Royal Society of Chemistry:
Cambridge, UK, 1994. (z) Nolte, R. J. M. Chem. Soc. ReV. 1994, 23, 11-
19.
(4) The term “pore” is used for systems that transport organic molecules,
whereas the term “ion channel” is used for inorganics (all pores are channels,
but not all channels are pores).
9
10068 J. AM. CHEM. SOC. VOL. 126, NO. 32, 2004