10.1002/adsc.201700931
Advanced Synthesis & Catalysis
Another reaction proceed in dark for 12 h, and then
proceed in 40 W energy saving lamp, 3aa was
obtained in 83% yield (eq 5). These results indicated
that quinoline N-oxide could be first afforded as an
electrophilic reagent which was further converted
into the corresponding alkynylation quinoline via the
assistance of visible light, but the reason why light
promotes the reaction is still unknown in this case.
On the bases of the results obtained above and
Waser, Chem. Soc. Rev. 2012, 41, 4165-4179; g) B.
Godoi, R. F. Schumacher, G. Zeni, Chem. Rev. 2011,
111, 2937-2980; h) R. Chinchilla, C. Nájera, Chem.
Rev. 2014, 114, 1783-1826.
[2] a) K. Sonogashira, J. Organomet. Chem. 2002, 653, 46-
49; b) R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107,
874-922; c) H. Doucet, J. Cyrille Hierso, Angew. Chem.
Int. Ed. 2007, 46, 834-871.
previous literatures,[16]
a
tentative nucleophilic
[3] a) K. Kobayashi, M. Arisawa, M. Yamaguchi, J. Am.
Chem. Soc. 2002, 124, 8528-8529; b) I. V. Seregin, V.
Ryabova, V. Gevorgyan, J. Am. Chem. Soc. 2007, 129,
7742-7743; c) N. Matsuyama, K. Hirano, T. Satoh, M.
Miura, Org. Lett. 2009, 11, 4156-4159; d) F. Besselivre,
S. Piguel, Angew. Chem. Int. Ed. 2009, 48, 9553-9556;
e) Z. Shao, F. Peng, Angew. Chem., Int. Ed. 2010, 49,
9566-9568; f) M. Tobisu, Y. Ano, N. Chatani, Org. Lett.
2009, 11, 3250-3252. g) S. H. Kim, S. Chang, Org. Lett.
2010, 12, 1868-1871; h) A. S. Dudnik, V. Gevorgyan,
Angew. Chem., Int. Ed. 2010, 49, 2096-2098. i) Y. Ano,
M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2011, 133,
12984-12986; j) J. P. Brand, J. Waser, Chem. Soc. Rev.
2012, 41, 4165-4179; k) J. He, M. Wasa, K. S. L. Chan,
J. Q. Yu, J. Am. Chem. Soc. 2013, 135, 3387-3390; l) Y.
H. Xu, Q. C. Zhang, T. He, F. F. Meng, T. P. Loh, Adv.
Synth. Catal. 2014, 356, 1539-1543.
addition-elimination process was proposed (Scheme
2). First, phenylacetylene 2a was deprotonated
byKOH to generate a phenylacetylene carbanion A,
which further attacked the ortho-position of quinoline
N-oxide 1a and gave intermediate B. Finally, product
3aa was produced through [1,3]-hydrogen migration
assisted by visible light, and the catalyst KOH re-
entered the next catalytic cycle.
In conclusion, we have developed a KOH-
catalyzed alkynylation of heteroaromatic N-oxides
under transition-metal-free conditions with the
assistance of visible-light. A series of ortho-
alkynylated heterocycles were synthesized in up to
92% yield. This reaction features atom economy,
environmental friendliness, high efficiency, additive-
free, and good functional group tolerance. The
present protocol provides an important approach to
[4] a) J. P. Brand, J. Charpentier, J. Waser, Angew. Chem.,
Int. Ed. 2009, 48, 9346-9349; b) T. Kawano, N.
Matsuyama, K. Hirano, T. Satoh,; M. Miura, J. Org.
Chem. 2010, 75, 1764-1766; c) J. P. Brand, J. Waser,
Angew. Chem. Int. Ed. 2010, 49, 7304-7307; d) Y. Ano,
M. Tobisu, N. Chatani, Org. Lett. 2012, 14, 354-357; e)
J. P. Brand, J. Waser, Org. Lett. 2012, 14, 744-747; f)
Y. Li, J. P. Brand, J. Waser, Angew. Chem. Int. Ed.
2013, 52, 6743-6747; g) G. L. Tolnai, S. Ganss, J. P.
Brand,; J. Waser, Org. Lett. 2013, 15, 112-115; h) C.
Feng, T. P. Loh, Angew. Chem. Int. Ed. 2014, 53, 2722-
2726; i) F. Xie,; Z. Qi, S. Yu, X. Li, J. Am. Chem. Soc.
2014, 136, 4780-4787; j) Y. J. Liu, Y. H. Liu, S. Y.
Yan, B. F. Shi, Chem. Commun. 2015, 51, 6388-6391.
synthesize
ortho-alkynylated
heteroaromatic
compounds, which would be useful to build
multitudinous biologically active molecules and
functionalized materials.
Experimental Section
Typical Procedure
The mixture of quinoline N-oxides (29.0 mg, 0.2 mmol),
phenylacetylenes (44 uL, 0.4 mmol) and KOH (3.4 mg,
0.06 mmol, 30% mol) in anhydrous toluene (2.0 mL) was
stirred and refluxed conditions under 40 W energy saving
lamp for 12 hours. When the reaction was completed, the
crude mixture was cooled to room temperature. The
mixture was purified by column chromatography on silica
gel. (Elute: petroleum ether-EtOAc) to give the desired
product 3aa as a yellow oil; yield: 38.6 mg (85%).
[5] a) S. Protti, M. Fagnoni, A. Albini, Angew. Chem. Int.
Ed. 2005, 44, 5675-5678; b) P. L. DeRoy, S.
Surprenant, M. BertrandLaperle, C. Yoakim, Org. Lett.
2007, 9, 2741-2743; c) M. S. Maji, S. Murarka, A.
Studer, Org. Lett. 2010, 12, 3878-3881; d) T. Truong,
O. Daugulis, Org. Lett. 2011, 13, 4172-4175; e) J. L.
Garca Ruano, J. Alemn, L. Marzo, C. Alvarado, M.
Tortosa, S. Daz-Tendero, A. Fraile, Angew. Chem. Int.
Ed. 2012, 51, 2712-2716.
Acknowledgements
We greatly acknowledge partial financial support from the
Ministry of Science and Technology of China (2016YFE0132600),
the Science and Technology Innovation Program of Universities
in Henan Province (16HASTIT007), and Zhengzhou University.
[6] a) B. M. Trost, A. H. Weiss, Adv. Synth. Catal. 2009,
351, 963-983; b) N. K. Anand, E. M. Carreira, J. Am.
Chem. Soc. 2001, 123, 9687-9688; c) D. E. Frantz, R.
Fassler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122,
1806-1807; d) R. Takita, Y. Fukuta, R. Tsuji, T.
Ohshima, M. Shibasaki, Org. Lett. 2005, 7, 1363-1366;
e) X. Yao, C. J. Li, Org. Lett. 2005, 7, 4395-4398; f) D.
P. G. Emmerson, W. P. Hems, B. G. Davis, Org. Lett.
2006, 8, 207-210; g) P. K. Dhondi, P. Carberry, L. B.
Choi, J. D. Chisholm, J. Org. Chem. 2007, 72, 9590-
9596; h) P. G. Cozzi, Angew. Chem. Int. Ed. 2003, 42,
2895-2898; i) G. W. Zhang, W. Meng, H. Ma, J. Nie,
References
[1] a) F. Diederich, P. J. Stang, R. R. Tykwinski,
Acetylene Chemistry: Chemistry, Biology and Material
Science, Wiley-VCH, Weinheim, 2005; b) L. Anastasia,
E. Negishi, Chem. Rev., 2003, 103, 1979-2017; c) F.
Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004,
104, 3079-3159; d) S. Toyota, Chem. Rev. 2010, 110,
5398-5424; e) C. Liu, H. Zhang, W. Shi, A. W. Lei,
Chem. Rev. 2011, 111, 1780-1824. f) J. P. Brand, J.
4
This article is protected by copyright. All rights reserved.